LETTER RE: HAND POSTURES IN PRIMARY AND SECONDARY GENERALIZED TONIC-CLONIC SEIZURES

Scott Mintzer, Philadelphia: I congratulate Drs. Siegel and Tatum1 for the novel examination of hand postures in different seizure types. However, I have concerns that the statistical analysis was not done properly.

The authors reported the use of Fisher exact test with Bonferroni correction for multiple comparisons.1 Fisher exact test is most often used to analyze 2 × 2 contingency tables. There is a version for multiple groups, but it does not appear that it was used, as it would require the use of posttests and none were mentioned. The use of 3 sets of pairwise comparisons to compare 3 different groups violates the test assumptions. A more appropriate statistical practice is to use a test designed to compare multiple groups, followed by pairwise posttests if there is significance in the main test.

In addition, the concern raised by Dr. Lanska2 in a previous comment on this article was not adequately addressed by the authors.3 While the events may be considered independent from a clinical diagnostic standpoint, that does not make them independent from a statistical analysis standpoint. After all, it is the nature of the disease that seizures are stereotyped within a given patient.

Owing to these concerns, the p values reported by the authors may provide an inaccurate picture of statistical significance. The data should be reanalyzed.


© 2017 American Academy of Neurology

1802

LETTER RE: HAND POSTURES IN PRIMARY AND SECONDARY GENERALIZED TONIC-CLONIC SEIZURES

Scott Mintzer, Philadelphia: I congratulate Drs. Siegel and Tatum1 for the novel examination of hand postures in different seizure types. However, I have concerns that the statistical analysis was not done properly.

The authors reported the use of Fisher exact test with Bonferroni correction for multiple comparisons.1 Fisher exact test is most often used to analyze 2 × 2 contingency tables. There is a version for multiple groups, but it does not appear that it was used, as it would require the use of posttests and none were mentioned. The use of 3 sets of pairwise comparisons to compare 3 different groups violates the test assumptions. A more appropriate statistical practice is to use a test designed to compare multiple groups, followed by pairwise posttests if there is significance in the main test.

In addition, the concern raised by Dr. Lanska2 in a previous comment on this article was not adequately addressed by the authors.3 While the events may be considered independent from a clinical diagnostic standpoint, that does not make them independent from a statistical analysis standpoint. After all, it is the nature of the disease that seizures are stereotyped within a given patient.

Owing to these concerns, the p values reported by the authors may provide an inaccurate picture of statistical significance. The data should be reanalyzed.


© 2017 American Academy of Neurology


© 2017 American Academy of Neurology

AUTHOR UPDATE: SARCOPLASMIC MXA EXPRESSION: A VALUABLE MARKER OF DERMATOMYOSITIS

Akinori Uruha, Shigeaki Suzuki, Ichizo Nishino, Tokyo: Soon after our article published,1 we learned the sale of the myxovirus resistance A (MxA) polyclonal antibodies used in the study (Mx1/2/3 [H-285], sc-50509, Santa Cruz Biotechnology, Dallas, TX) had been discontinued. Furthermore, we received inquiries from several physicians concerning alternate MxA antibodies. We tested the company’s monoclonal antibody alternate (Mx1/2/3 [C-1], sc-166412) on frozen muscle sections at various dilutions in 2% bovine serum albumin in PBS using the Ventana immunohistochemistry detection system (Ventana Medical Systems, Tucson, AZ) with or without the enhancement mode. Muscle samples tested included MxA-positive dermatomyositis (n = 3, including 1 juvenile participant), MxA-negative dermatomyositis (n = 3), anti-Jo-1 myopathy (n = 3, MxA-negative), and immune-mediated necrotizing myopathy (n = 3, comprising 1 with anti-signal recognition particle antibodies [MxA-negative], 1 with anti-3-hydroxy-3-methylglutaryl-CoA reductase antibodies [MxA-negative], and 1 without those antibodies [MxA-positive]). We observed essentially the same staining pattern at comparable signal intensity as the original polyclonal antibodies at 1:10 dilution with the enhancement mode although the signal was barely detected at the manufacturer’s recommended dilution (starting dilution: 1:50), indicating that the monoclonal antibody alternate can be similarly used to detect sarcoplasmic MxA expression on frozen muscle sections for the diagnosis of dermatomyositis (although higher concentration is necessary).


© 2017 American Academy of Neurology

CORRECTIONS

Revisiting neurofibromatosis type 2 diagnostic criteria to exclude LZTR1-related schwannomatosis

In the article “Revisiting neurofibromatosis type 2 diagnostic criteria to exclude LZTR1-related schwannomatosis” by M.J. Smith et al.,1 there are errors in table 4. Row 3 should have read “FDR Family history of NF2 OR unilateral VS AND two of: meningioma, cataract, glioma, neurofibroma, nonvestibular schwannoma, cerebral calcification (if UVS ≥2 nonintradermal schwannomas need negative LZTR1 test) OR.” Row 4 should have read: “Multiple meningioma (2 or more) AND unilateral VS OR two of: Cataract, glioma, neurofibroma, nonvestibular schwannoma, cerebral calcification OR.” The authors regret the errors.

REFERENCE


Autologous hematopoietic stem cell transplantation in multiple sclerosis: A meta-analysis

In the article “Autologous hematopoietic stem cell transplantation in multiple sclerosis: A meta-analysis” by M.P. Sormani et al.,1 there is an error in figure 2. The label at the top of the right panel should have read “5-Year progression rate (%).” The label at the top of the right panel should have read “5-Year progression rate (%).” The authors regret the errors.

REFERENCE

Autologous hematopoietic stem cell transplantation in multiple sclerosis: A meta-analysis

Neurology 2017;89:215
DOI 10.1212/WNL.0000000000004169

This information is current as of July 10, 2017

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/89/2/215.3.full

References
This article cites 1 articles, 1 of which you can access for free at:
http://n.neurology.org/content/89/2/215.3.full#ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise