Teaching NeuroImages: Classic Ramsay Hunt syndrome and associated MRI findings

An 85-year-old woman with dementia presented with left ear pain, vertigo, and mild left peripheral facial weakness of unclear chronicity. MRI demonstrated contrast enhancement of cranial nerves (CNs) VII and VIII consistent with Ramsay Hunt syndrome (RHS)\(^1\) (figure 1). She was treated with steroids and acyclovir. On evaluation 4 days later, she had developed the classic RHS triad of ear pain, ipsilateral facial

(A) Contrast enhancement of intracanalicular CN VII segment (arrowhead) and geniculate ganglion (arrow). (B) Contrast enhancement of intracanalicular segments of CN VII (arrowhead) and CN VIII (arrow). The contralateral CN VII and CN VIII appear normal.

From the Department of Neurology, University of Minnesota, Minneapolis.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
paralysis, and vesicular rash, plus hyperacusis and persistent vertigo (figure 2).²

In the appropriate setting, MRI demonstrating contrast enhancement of CN VII plus additional affected CNs (most commonly VIII) may allow diagnosis of RHS prior to onset of the classic vesicular rash.

AUTHOR CONTRIBUTIONS
Edward Labin: drafting of the manuscript, acquisition of data. Huseyin Tore: analysis and interpretation of data. Mohammed Alkuwaiti: acquisition of data, analysis and interpretation of data. Christopher Streib: critical revision of manuscript for intellectual content, study supervision.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Teaching NeuroImages: Classic Ramsay Hunt syndrome and associated MRI findings
Edward Labin, Huseyin Tore, Mohammed Alkuwaiti, et al.

Neurology 2017;89:e79-e80
DOI 10.1212/WNL.0000000000004239

This information is current as of August 14, 2017

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/89/7/e79.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2017/08/14/WNL.0000000000004239.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/89/7/e79.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
All Imaging
http://n.neurology.org/cgi/collection/all_imaging
MRI
http://n.neurology.org/cgi/collection/mri
Post-infectious
http://n.neurology.org/cgi/collection/postinfectious_

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise