A 47-year-old woman reported a slowly progressive 15-month history of intermittent visual loss on rightward gaze as well as diminished visual acuity of her right eye. Examination revealed right ocular red desaturation, afferent pupillary defect, impaired visual acuity, and optic disc swelling (figure, A). Head imaging revealed an optic nerve sheath meningioma (figure, B and C). A brain MRI performed 4 months prior to the current evaluation displayed a similar pattern of optic nerve enhancement. Gaze-evoked amaurosis is transient monocular visual loss on eccentric gaze. It is suggestive of intracanal
pathology and is putatively caused by position-dependent occlusion of the retinal or optic nerve circulation. The most common causes of gaze-evoked amaurosis are optic nerve sheath meningioma and cavernous hemangioma. Treatment options for optic nerve sheath meningioma include observation, radiotherapy, radiosurgery, and resection.

Author contributions
Stephen A. Johnson: preparation of manuscript. John J. Chen: review of manuscript, funduscopic imaging. W. Oliver Tobin: review and supervision of manuscript.

Study funding
This work was supported in part by an unrestricted grant to the Department of Ophthalmology by Research to Prevent Blindness, Inc., New York, NY.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References
Teaching NeuroImages: Optic nerve sheath meningioma presenting as gaze-evoked amaurosis
Stephen A. Abraham Johnson, John J. Chen and W. Oliver Tobin
Neurology 2018;90:e2095-e2096
DOI 10.1212/WNL.0000000000005642

This information is current as of June 4, 2018
Teaching NeuroImages: Optic nerve sheath meningioma presenting as gaze-evoked amaurosis
Stephen A. Johnson, John J. Chen and W. Oliver Tobin
Neurology 2018;90;e2095-e2096
DOI 10.1212/WNL.0000000000005642
This information is current as of June 4, 2018

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/90/23/e2095.full

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/90/23/e2095.full#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://n.neurology.org/content/90/23/e2095.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Nerve tumor
http://n.neurology.org/cgi/collection/nerve_tumor
Optic nerve
http://n.neurology.org/cgi/collection/optic_nerve
Visual loss
http://n.neurology.org/cgi/collection/visual_loss

Errata
An erratum has been published regarding this article. Please see next page or:
/content/100/23/1120.2.full.pdf

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2018 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.
Editors’ Note: Neurology Education in 2035: The Neurology Future Forecasting Series

Considering the increasing subspecialization of medical providers, including that of neurologists, Drs. Moeller and Salas provide a refreshing perspective on the educators and scholars as medical subspecialists. There is a unique skill possessed by these individuals, which requires tutelage and time, not to mention recognition by departmental leadership if these roles are to be appreciated and sustainable. In their narrative review on the future of clinician scholars and educators, the authors delineate these evolving roles and, more specifically, how current and future stakeholders can support individuals with this unique skill set. Dr. Das highlights the uncertain but likely significant impact of artificial intelligence in future neuromedical education. The fact that ChatGPT (as an example) emerged between the acceptance and publication of the article by Moeller and Salas—and that ChatGPT has captured the attention of clinical medicine, research, and other disciplines—is a testament of how difficult it may be to predict the future of medical education. The authors acknowledge that artificial intelligence platforms such as ChatGPT will play a role in medical education; however, the influence of these and other technologies will require filtering and application by educators, scholars, and other investigators to understand their impact. Nonetheless, these technologies are likely to drive the movement toward personalized educational experiences while providing new avenues to advance our neurologic knowledge.

James E. Siegler, MD, and Steven Galetta, MD
Neurology® 2023;100:1119. doi:10.1212/WNL.0000000000207440
Author Response: Neurology Education in 2035: The Neurology Future Forecasting Series

Jeremy J. Moeller (New Haven, CT) and Rachel M.E. Salas (Baltimore)

Neurology® 2023;100:1120. doi:10.1212/WNL.0000000000207442

We appreciate the comment by Dr. Das and welcome the opportunity to provide some thoughts about Artificial Intelligence (AI) in neurology education. We drafted this manuscript in the first half of 2022, and it was accepted in its final form in October 2022, a month before the launch of ChatGPT moved AI to the forefront of our collective consciousness. Although the principles of machine learning date back to the 1950s, the integration of AI into medical research and clinical care has been challenging and typically slower than predicted. We direct readers to the excellent Future Forecasting Series article by Jones and Kerber1 for a detailed and nuanced discussion of this issue. There have been many examples of potential applications of AI in all aspects of medical education, but there are still major limitations in the methodological frameworks to evaluate the effect of this work.2 AI will likely play a greater role in everything in 2035—including neurology education—and like every other technological innovation, it will have essential applications and serious shortcomings. Our goal as educators will be to ensure that the desire for efficiency and automation does not supplant the centrality of human relationships in our educational mission.

CORRECTION & REPLACEMENT

Teaching NeuroImages: Optic Nerve Sheath Meningioma Presenting as Gaze-Evoked Amaurosis

Neurology® 2023;100:1120. doi:10.1212/WNL.0000000000201643

In the Resident and Fellow Section article entitled “Teaching NeuroImages: Optic Nerve Sheath Meningioma Presenting as Gaze-Evoked Amaurosis” by Johnson et al.,1 the first author’s name should be listed as “Stephen A. Johnson.” The article has been replaced by a corrected version. The publisher regrets the error.

Reference