Notable in Neurology This Week
This issue features an article that describes the neuroprotective and compensatory effects of intellectual activity on brain aging and cognition during amyloid accumulation and another that discusses the brain amyloid pathology in a population at risk of dementia, but with normal cognition. A featured Special Article details an update of the 2001 American Academy of Neurology guideline on mild cognitive impairment.

Articles

Comparative effect of statins on the risk of incident Alzheimer disease
This observational study used head-to-head comparison to evaluate the possible neuroprotective effect of statins. Fungus-derived and lipophilic statins did not decrease Alzheimer disease incidence compared to synthetic or hydrophilic statins in this study. Individual statin characteristics should not influence clinical management of patients aged ≥60 years needing such medication.
Page 107

From editorialists Yasar & Whitmer: “This study is important since it highlights a new, pharmacologic consideration that may be important for randomized clinical trials, since results may vary by chemical structure and properties of statins used.”
Page 103

Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study
Of all vegetables, green leafy vegetables provide the strongest protection against cognitive decline. In this prospective study, the authors investigated the primary nutrients and bioactive ingredients of green leafy vegetables. Consuming one serving of foods rich in phylloquinone, lutein, nitrate, folate, α-tocopherol, and kaempferol may help slow cognitive decline.
Page 112

Silent cerebral infarct definitions and full-scale IQ loss in children with sickle cell anemia
Definitions of silent cerebral infarct (SCI) differ between pediatric and adult populations. The authors evaluated whether the radiologic adult definition is associated with pediatric-defined SCI (5.2-point decline in full-scale IQ) in children with sickle cell anemia. No association was found, so the pediatric definition of SCI should be maintained.
Page 115

From editorialists Pavlakis & Roach: “Ultimately, treatment of neurologic complications in sickle cell disease needs to lower the risk for stroke, silent cerebral infarction, and cognitive decline with or without normal conventional MRI. Diffusion tensor imaging might be a more sensitive biomarker for subtle brain disease in sickle cell disease.”
Page 105

Continued
Ovarian aging is associated with gray matter volume and disability in women with MS

The perimenopausal period may confer a worsening disease course in women with multiple sclerosis (MS). The authors observed that a biomarker of ovarian aging, anti-Müllerian hormone, is associated with clinical and MRI outcomes in women with MS. Biological changes associated with ovarian aging may have an influence on the course of MS.

Page 117

NB: “Moyamoya-like cerebrovascular disease in a child with a novel mutation in myosin heavy chain 11,” p. 136. To check out other Clinical/Scientific Notes, point your browser to Neurology.org/N. At the end of the issue, check out the Resident & Fellow Teaching NeuroImage discussing Gasperini syndrome, and a Teaching Video NeuroImage on electromyographic variation in stiff-person syndrome. This week also includes a NeuroImage titled “Orolingual and abdominal angioedema post thrombolysis and thrombectomy.”

2. Lesson of the Week: Migraine and hormones

This Neurology® Podcast begins and closes with Dr. Robert Gross, Editor-in-Chief, briefly discussing highlighted articles from the January 16, 2018, issue of Neurology.

In the first segment, Dr. Jeff Burns talks with Dr. Ronald Petersen about the updated 2001 AAN guideline on prevalence, prognosis, and treatment of mild cognitive impairment. For the Lesson of the Week, Dr. Tesha Mae Monteith speaks with Dr. Jelena Pavlovic about the association between hormones and migraine.

Disclosures can be found at Neurology.org/podcast.
Spotlight on the January 16 issue
Robert A. Gross
Neurology 2018;90;101-102
DOI 10.1212/WNL.0000000000004817

This information is current as of January 15, 2018

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/90/3/101.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>