Teaching NeuroImages: Atrophy in epileptic encephalopathy

Ingo Helbig, MD, and Laura Adang, MD, PhD

Neurology® 2018;90:e442-e443. doi:10.1212/WNL.0000000000004884

Correspondence
Dr. Helbig
helbigi@email.chop.edu

Figure MRI of the brain

Brain MRI demonstrates diffuse atrophy (A) and bilateral and symmetrical T2/fluid-attenuated inversion recovery hyperintense signal intensity in the thalami (B). Prior MRI at the age of 1 and 5 months were unremarkable. Magnetic resonance spectroscopy at the age of 5 months and 3 years was unremarkable.

Neuroimaging in a 6-year-old girl with an unknown neurodegenerative disorder showed atrophy and bilateral thalamic T2/fluid-attenuated inversion recovery hyperintense signal intensity (figure). A mitochondrial or metabolic condition was suspected. Through a targeted gene panel, the patient was found to have a de novo KCNT1 mutation, a gene known to cause of a broad range of epileptic encephalopathies.1

Channelopathies may present with features suggesting neurodegenerative or neurometabolic disorders, or leukodystrophies.2 Epilepsies due to de novo mutations are more common by probably more than an order of magnitude and atypical presentations may be on the differential for unsolved neurodegenerative disorders.

From the Division of Neurology, The Children’s Hospital of Philadelphia, PA.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Author contributions
Ingo Helbig: study concept of design and acquisition of data. Laura Adang: study concept of design and critical revision of manuscript for intellectual content.

Study funding
No targeted funding reported.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References
Teaching NeuroImages: Atrophy in epileptic encephalopathy
Ingo Helbig and Laura Adang
Neurology 2018;90:e442-e443
DOI 10.1212/WNL.0000000000004884

This information is current as of January 29, 2018

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/90/5/e442.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 2 articles, 0 of which you can access for free at: http://n.neurology.org/content/90/5/e442.full#ref-list-1</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 1 HighWire-hosted articles: http://n.neurology.org/content/90/5/e442.full##otherarticles</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): All Epilepsy/Seizures http://n.neurology.org/cgi/collection/all_epilepsy_seizures Infantile spasms http://n.neurology.org/cgi/collection/infantile_spasms Ion channel gene defects http://n.neurology.org/cgi/collection/ion_channel_gene_defects Status epilepticus http://n.neurology.org/cgi/collection/status_epilepticus</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>