A 61-year-old man underwent a left cervical internal carotid artery stenting following a recent ischemic stroke. Postoperative angiography was satisfactory and did not reveal any in-stent filling defect (figure 1A). Optical coherence tomography (OCT) probe was used to visualize the endoluminal area following stenting. OCT confirmed optimum placement of the stent and revealed a small plaque protrusion from the stent struts following deployment (figure 1B).
OCT offers the advantage of obtaining very high spatial resolution in real time of the artery lumen (figure 2). OCT can be a useful adjunct to diagnose in-stent plaque protrusions that are difficult to visualize in digital subtraction angiography.1,2

Author contributions
Conception and design, acquisition of data, analysis and interpretation of data: All authors. Drafting the article: Drs. Alotaibi and Yang. Critically revising the article: Dr. Yang. Approved the final version of the manuscript on behalf of all authors: Dr. Yang.

Study funding
No targeted funding reported.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References

Share Your Artistic Expressions in Neurology ‘Visions’

AAN members are urged to submit medically or scientifically related artistic images, such as photographs, photomicrographs, and paintings, to the "Visions" section of Neurology®. These images are creative in nature, rather than the medically instructive images published in the NeuroImages section. The image or series of up to six images may be black and white or color and must fit into one published journal page. Accompanying description should be 100 words or less; the title should be a maximum of 96 characters including spaces and punctuation.

Please access the Author Center at NPub.org/authors for full submission information.
Carotid artery stenting with optical coherence tomography
Naif M. Alotaibi, Francesca Sarzetto, Joel Ramjist, et al.
Neurology 2018;90;384-385
DOI 10.1212/WNL.0000000000005003

This information is current as of February 19, 2018

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/90/8/384.full

References
This article cites 2 articles, 1 of which you can access for free at:
http://n.neurology.org/content/90/8/384.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise