Pearls & Oy-sters: Pembrolizumab-induced myasthenia gravis

Mohanad Algaeed, MD, Loulwah Mukharesh, MD, Morgan Heinzelmann, MD, and Henry J. Kaminski, MD

Neurology® 2018;91:e1365-e1367. doi:10.1212/WNL.0000000000006278

Pearls

- Myasthenia gravis (MG) is an uncommon autoimmune, postsynaptic neuromuscular disorder, characterized clinically by variable and fluctuating weakness of ocular, bulbar, respiratory, and limb muscles.
- Targeted immunotherapies, directed against immune checkpoint modulators such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and the PD-1 ligand (PD-L1), have become an important treatment modality for malignancies; while effective, these novel therapies have been associated with autoimmune-related adverse events.
- Exacerbations of preexisting MG, as well as de novo presentations of MG, have been reported after the initiation of these agents; to date in the literature, pembrolizumab (Keytruda) has been associated with 3 exacerbations and 7 de novo presentations of MG.
- It is imperative to be acquainted with immune checkpoint modulator complications, as while they are effective in otherwise treatment-resistant malignancies, they may also produce severe adverse effects including exacerbation or induction of autoimmune disorders including devastating neurologic diseases and endocrinopathies.

Oy-ster

- Health care providers must have a high level of suspicion for MG among patients with weakness occurring soon after receiving checkpoint inhibitor therapy as early detection and treatment are likely to improve outcomes.

Case report

A 73-year-old man presented with fluctuating left eyelid droop and shortness of breath over 3 days. In the 3 weeks prior to presentation, he had received pembrolizumab for recurrent melanoma. He denied a history of similar complaints, and he had no personal or family history of autoimmune disease.

Examination demonstrated increasing ptosis with sustained upgaze and reduced neck flexion strength, but motor power was otherwise normal. He had no bulbar muscle weakness; negative inspiratory force was −20 cm of H₂O. The patient developed increasing respiratory insufficiency requiring intubation and mechanical ventilation. There was no evidence of infection, including negative Lyme antibody serology. Acetylcholine receptor binding antibody was 6.4 nmoL.

During the hospitalization, the patient received pyridostigmine but was subsequently held due to excess respiratory secretions and developed aspiration pneumonia, which was treated with antibiotics.
The patient received 2 g/kg of IV immunoglobulin (IVIg) therapy and was started on prednisone 60 mg daily. Because of a lack of improvement, he underwent plasmapheresis for a total of 5 exchanges. After 5 weeks of hospitalization, the patient was transferred to an institution close to his home where he received another course of IVIg and continued prednisone treatment. Ultimately, the patient was successfully discharged home with home services.

Discussion

Treatment of malignancy has undergone a revolution with the development of immunotherapies that target immune checkpoints; specifically, CTLA-4, PD-1, and PD-L1. One example is pembrolizumab, a humanized monoclonal antibody against PD-1, a cell surface receptor that prevents T-cell activation and autoimmunity while promoting self-tolerance.\(^1\) It was initially approved for the treatment of metastatic melanoma, but additional approved uses now include gastric cancer, squamous cell head and neck cancer, non-small cell lung cancer, urothelial carcinoma, Hodgkin lymphoma, and microsatellite instability-high cancer. While pembrolizumab and other checkpoint inhibitor therapies have proven to be effective and usually well-tolerated, they have been associated with various adverse effects, including exacerbation or production of autoimmune disorders such as autoimmune thyroid diseases, adrenal insufficiency, type 1 diabetes mellitus, and Guillain-Barré syndrome.\(^2,3\)

MG has been found to occur with pembrolizumab initiation, and both exacerbations of preexisting MG and de novo onset of MG have been described. To date, pembrolizumab has been associated with 3 exacerbations without any reported fatality,\(^4-6\) and 7 de novo presentations.\(^7-12\)

The frequency of MG with checkpoint inhibitor treatment is not known.\(^3\) Immune-related adverse events can occur any time after treatment initiation, as it may also occur after treatment cessation. However, once initiated, it usually occurs within the first few weeks to months.\(^3\)

Another PD-1 inhibitor example is nivolumab, which has been responsible for 6 de novo cases and 1 exacerbation of preexisting MG.\(^13-17\) Thus far, ipilimumab, which is an inhibitor of CTLA-4, has been linked to 5 de novo MG cases, where 1 case was in combination with nivolumab.\(^18\)

A wide range of neurologic complications was reported in a large retrospective series that included 3,763 patients treated with nivolumab plus ipilimumab, or nivolumab alone.\(^19\) A total of 35 patients had substantial neurologic complications.\(^19\) Examples of such complications included encephalitis (a total of 5 cases), meningitis (a total of 5 cases), acute or chronic peripheral neuropathy (a total of 14 cases), and 1 case of MG.\(^19\)

Treatment of immune checkpoint inhibitor-induced MG has typically involved acetylcholinesterase inhibitors or high-dose corticosteroids\(^5,7-11,14,16,17,20\) with or without either IVIg\(^4,5,8,11,15,20\) or plasmapheresis.\(^5,7,8,17,18,20\) These are the typical therapies for MG exacerbation and there is no information to suggest if there is a superior treatment for this drug-associated form of MG.

MG exacerbation is considered a high-grade life-threatening complication that requires collaborative decision-making with the patient, neurologist, and oncologist to consider permanent discontinuation of the checkpoint inhibitor. Health care providers should have a high level of suspicion of MG development or exacerbation with use of checkpoint inhibitors, as early detection and treatment will likely limit mortality and morbidity.

Author contributions

Dr. Algaeed: literature review, manuscript writing, concept analysis. Dr. Mukharesh: manuscript writing. Dr. Heinzelmann: literature review, manuscript writing. Dr. Kaminski: concept analysis, critical revision of the article, expert input.

Acknowledgment

Dr. Algaeed is a 2nd-year Neurology resident at the George Washington University Hospital. Dr. Mukharesh is a 3rd-year Neurology resident at the George Washington University Hospital. Dr. Heinzelmann is a 4th-year medical student at the George Washington University Hospital. Dr. Kaminski is the Chairman of the Neurology Department at the George Washington University and has provided clinical care and research in myasthenia gravis for nearly 30 years.

Study funding

No targeted funding reported.

Disclosure

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References

Pearls & Oy-sters: Pembrolizumab-induced myasthenia gravis
Mohanad Algaeed, Loulwah Mukharesh, Morgan Heinzelmann, et al.
Neurology 2018;91:e1365-e1367
DOI 10.1212/WNL.0000000000006278

This information is current as of October 1, 2018

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/91/14/e1365.full

References
This article cites 20 articles, 2 of which you can access for free at:
http://n.neurology.org/content/91/14/e1365.full#ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles:
http://n.neurology.org/content/91/14/e1365.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
Autoimmune diseases
http://n.neurology.org/cgi/collection/autoimmune_diseases
Chemotherapy-tumor
http://n.neurology.org/cgi/collection/chemotherapytumor
Myasthenia
http://n.neurology.org/cgi/collection/myasthenia
Other toxicology
http://n.neurology.org/cgi/collection/other_toxicology

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise