A 5-year-old boy presented with bilateral congenital sensorineural hearing loss and bilateral isohypochromia iridis without dystopia canthorum. MRI showed a shortened posterior semicircular canal (figures 1 and 2) compatible with Waardenburg syndrome (WS).

WS is a rare genodermatosis that affects 1:40,000 children and is caused by abnormal migration of melanoblasts from the neuroectoderm. There are 4 types of WS (1 and 3, autosomal dominant; 2 and 4, dominant or recessive). Type 2 differs from type 1 due to the absence of dystopia canthorum. Type 3 is associated with musculoskeletal abnormalities and type 4 with Hirschsprung disease.1,2

Author contributions
M. Rosa Júnior: design or conceptualization of the study, analysis or interpretation of the data, drafting or revising the manuscript for intellectual content. L.M. Santana: analysis or interpretation of the data. B.F. Ramos: analysis or interpretation of the data, drafting or revising the manuscript for intellectual content. H.F. Ramos: analysis or interpretation of the data, drafting or revising the manuscript for intellectual content.

Study funding
No targeted funding reported.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Copyright © 2019 American Academy of Neurology
Figure 2 MRI in Waardenburg syndrome

(A–C) Axial T2-weighted imaging (T2WI) shows normal superior semicircular canal (SC) (white arrows), normal lateral SC (yellow arrows), and shortened and thick posterior SC (red arrows). (D) Sagittal T2WI and (E) 3D posterior view show normal superior SC (white arrow) and abnormal posterior SC (red arrow).

References
Teaching NeuroImages: Waardenburg syndrome type 2
Marcos Rosa Júnior, Larissa Marques Santana, Bernardo Faria Ramos, et al.
Neurology 2019;92:e1935-e1936
DOI 10.1212/WNL.0000000000007318

This information is current as of April 15, 2019

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/92/16/e1935.full

References
This article cites 2 articles, 2 of which you can access for free at:
http://n.neurology.org/content/92/16/e1935.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Audition
http://n.neurology.org/cgi/collection/audition
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise