














published studies. The first was publication bias; here, we
included all studies, and unpublished studies are more likely
to be negative. The second was controlling for covariates,
because most published studies did not control well for
covariates. We proceeded to investigate the relative

contribution of these 2 possibilities by repeating the primary
analyses for primary (figure 2B) and secondary (figure 4)
outcomes using data from published studies alone. We also re-
peated the primary (i.e., 2-stage IPLD) analyses without
adjusting for covariates for both primary (figure 2C) and

Figure 2 Forest plots for 2-stage individual patient–level data analysis for primary outcome (dichotomizedmodified Rankin
Scale score in HP2-2 vs HP2-1 and HP1-1)

An odds ratio (OR) >1 denotes a higher
probability of poor outcome. (A) Adjusted
for covariates, (B) same as A but including
published studies only, and (C) un-
adjusted for covariates. CI = confidence
interval; HP = haptoglobin; ID = identifier.
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secondary (figure 5) outcomes. None of these analyses showed
a significant difference or a trend suggesting an association.

A number of other sensitivity analyses were conducted to
evaluate the robustness of the results. These were as fol-
lows: (1) exclusion of studies in which patients included in
the primary analysis were not in HWE; (2) inclusion of
additional covariates; (3) inclusion of studies that did not
have all the essential covariates; (4) sliding dichotomy
analysis; (5) ordinal regression; (6) 1-stage analysis; (7)
unpublished studies only; and (8) including only covariates
significant in univariate analysis. For all, the results
remained consistent (figures e-6–e-11 and tables e-4–e-6
available from Eprints, eprints.soton.ac.uk/426525/).

There were no trends suggesting an association between
HP genotype and primary or secondary outcomes in any of
these analyses.

Heterogeneity and publication bias
In all analyses, there was little evidence for heterogeneity
(I2 range 0%–35.8%, Cochrane Q tests were not significant,
p > 0.05) except for angiographic vasospasm (figure 3C and
figure e-10C available from Eprints, eprints.soton.ac.uk/
426525/). There was no indication of publication bias from
funnel plots (Egger regression test, p > 0.05 for all the tests)
for any analyses (figures e-12–e-36 available from Eprints,
eprints.soton.ac.uk/426525/).

Table 2 Summary of the 2-stage IPLD analysis results for all primary and secondary outcomes adjusted for covariates

Outcome Analysis OR (95% CI) p Value

Primary HP2-2 vs HP2-1 and HP1-1 0.997 (0.672–1.421) 0.905

HP2-2 vs HP1-1 0.752 (0.429–1.321) 0.322

HP2-1 vs HP1-1 0.814 (0.470–1.410) 0.462

HP2-2 vs HP2-1 1.021 (0.684–1.524) 0.921

HP2-2 and 2-1 vs HP1-1 0.776 (0.461–1.305) 0.339

Secondary

DCI HP2-2 vs HP2-1 and HP1-1 1.171 (0.735–1.867) 0.507

HP2-2 vs HP1-1 0.878 (0.437–1.762) 0.713

HP2-1 vs HP1-1 0.735 (0.393–1.376) 0.336

HP2-2 vs HP2-1 1.187 (0.707–1.993) 0.517

HP2-2 and 2-1 vs HP1-1 0.851 (0.476–1.523) 0.587

Radiologic infarction HP2-2 vs HP2-1 and HP1-1 1.255 (0.632–2.490) 0.516

HP2-2 vs HP1-1 0.868 (0.314–2.402) 0.785

HP2-1 vs HP1-1 0.536 (0.218–1.319) 0.174

HP2-2 vs HP2-1 1.369 (0.662–2.832) 0.397

HP2-2 and 2-1 vs HP1-1 0.611 (0.259–1.441) 0.260

Angiographic vasospasm HP2-2 vs HP2-1 and HP1-1 1.130 (0.498–2.564) 0.771

HP2-2 vs HP1-1 0.942 (0.445–1.993) 0.877

HP2-1 vs HP1-1 0.862 (0.285–2.602) 0.792

HP2-2 vs HP2-1 1.184 (0.422–3.321) 0.749

HP2-2 and 2-1 vs HP1-1 1.015 (0.484–2.127) 0.969

TCD evidence of vasospasm HP2-2 vs HP2-1 and HP1-1 0.895 (0.557–1.439) 0.648

HP2-2 vs HP1-1 0.962 (0.496–1.867) 0.909

HP2-1 vs HP1-1 1.048 (0.566–1.940) 0.881

HP2-2 vs HP2-1 0.882 (0.534–1.456) 0.662

HP2-2 and 2-1 vs HP1-1 0.980 (0.550–1.746) 0.945

Abbreviations: CI = confidence interval; HP = haptoglobin; IPLD = individual patient–level data; OR = odds ratio; TCD = transcranial Doppler.
An OR >1 denotes a higher probability of poor outcome.
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Figure 3 Forest plots for 2-stage individual patient–level data analysis for secondary outcomes adjusted for covariates
(HP2-2 vs HP2-1 and HP1-1)

An odds ratio (OR) >1 denotes a higher proba-
bility of poor outcome. (A) Delayed cerebral is-
chemia, (B) radiologic infarction, (C)
angiographic evidence of vasospasm, and (D)
transcranial Doppler evidence of vasospasm. CI
= confidence interval; HP = haptoglobin; ID =
identifier.
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Discussion
As is normal in IPLD methodology, study size was driven by
data availability rather than by a predetermined sample size.
Prestudy power, by which we mean a power calculation using
estimates from prior studies, was performed on data from the

largest published study in the IPLD (study I),11 which had an
effect size of an OR of 1.8 for comparing HP2-2 vs HP2-1 and
HP1-1 on the primary outcome. A logistic regression of the
binary response variable (mRS score) on the binary in-
dependent variable (HP2-2 vs HP2-1 and HP1-1) with
a sample size of 755 subjects (of whom 69% were HP2-1 and

Figure 4 Forest plots for secondary outcomes, adjusted for covariates, published studies only (HP2-2 vs HP2-1 and HP1-1)

An odds ratio (OR) >1 denotes a higher
probability of poor outcome. (A) Delayed ce-
rebral ischemia, (B) radiologic infarction, (C)
angiographic evidence of vasospasm, and (D)
transcranial Doppler evidence of vasospasm.
CI = confidence interval; HP = haptoglobin; ID
= identifier.
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Figure 5 Forest plots for secondary outcomes, unadjusted for covariates (HP2-2 vs HP2-1 and HP1-1)

An odds ratio (OR) >1 denotes a higher probability of
poor outcome. (A) Delayed cerebral ischemia, (B) ra-
diologic infarction, (C) angiographic evidence of vaso-
spasm, and (D) transcranial Doppler evidence of
vasospasm. CI = confidence interval; HP = haptoglobin;
ID = identifier.
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HP1-1 and 31% were HP2-2) achieved 94% power at a 0.050
significance level to detect a small to medium effect size of an
OR of 1.8 with a 2-sidedWald test. Even with the conservative
estimate of an OR of 1.6 (10% reduction of OR = 1.8), power
was 79% at a 0.050 significance level to detect the association.
Therefore, this study has conclusively proven that HP2-2 is
not associated with a poor long-term outcome as defined by
the mRS score, down to a minimum OR of 1.6.

Although the reason could simply be that there is no differ-
ence in the relative protective effects of different HP geno-
types, there are several possible explanations of how a clinical
effect could have been missed. First, the mRS and GOS may
be insufficiently sensitive outcome measures to detect subtle
yet important outcome variation in patients after aSAH, in-
cluding cognitive impairment, anxiety, and return to work.25,26

Subarachnoid hemorrhage (SAH)–specific outcome measures
covering these more subtle outcomes such as the SAH outcome
tool,27may bemore sensitive in detecting an association between
HP genotype and functional outcome. Another possible reason
is that the early brain injury takes longer to settle and expose the
final residual permanent deficit influenced by HP genotype. In
this study, outcomeswere analyzed 2weeks to 1 year after aSAH;
however, improvements have been demonstrated beyond this
time. For example, mRS score has been shown to improve in
19%of patients between 12 and 36months after aSAH.28Hence,
future studies should consider longer follow-up periods.

The negative result for all secondary outcomes is not con-
sistent with the recent meta-analysis that provided evidence
that the HP2 allele was associated with worse short-term
outcome, including DCI and vasospasm.11 The previous
meta-analysis had a number of limitations that may underlie
this discrepancy. First, the meta-analysis used a composite
definition of short-term outcome grouping DCI or cerebral
vasospasm by any definition into 1 binary outcome measure.
In comparison, the IPLD analysis here used specific defi-
nitions of cerebral vasospasm and DCI, which were analyzed
separately. Second, the meta-analysis did not control for
covariates known to affect outcome after aSAH, the inclusion
of which in the IPLD analysis may explain the different result.
The effect sizes observed for the secondary outcomes, besides
not achieving statistical significance or showing trends, were
extremely small. Taken together, this demonstrates that there
is no meaningful, clinically significant difference in these
outcomes between HP genotypes.

Although this IPLD analysis included a number of un-
published studies, which may have contributed significantly to
the negative result, a sensitivity analysis of published studies
only was still negative. It has previously been noted that in-
corporation of unpublished studies does not significantly
change the results of most meta-analyses.29

The binding of Hp to Hb is thought to confer protection via
a number of mechanisms, including limiting the oxidative
damage potential of Hb,30 facilitating its clearance via the

CD163 membrane receptor on macrophages/microglia,31

and generating an anti-inflammatory response.32 The lack of
a clear effect of HP genotype on outcome after aSAH in
humans contrasts with observations in animal models.
Transgenic mice expressing a murine equivalent of human
HP2 experienced more vasospasm and functional deficit after
experimentally induced SAH compared to wild-type mice.33

However, there are important biological differences between
mice and humans. The influence of Hp on the affinity of
CD163 to Hb is markedly different,34 and CD163 shedding
occurs in humans,12 not mice.35 These differences suggest
that the Hb scavenging system is sufficiently different between
the 2 species such that extrapolation of the detrimental effect
of HP2 observed in this mouse model to humans should be
done with extreme caution.

The basic unit of Hp protein is an Hp monomer consisting of
1 α and 1 β subunit. The HP1 allele codes for an α subunit
(called α1) with 1 cysteine residue that enables dimerization of
the Hp monomer by formation of a disulfide bond. The HP2
allele codes for an α2 subunit that contains an extra cysteine
residue compared to α1 and is therefore able to make multiple
disulfide bonds, resulting in several polymers of increasing
size in HP2-1 heterozygotes and HP2-2 homozygotes.10

Whether there is a functional difference between the proteins
expressed by different HP genotypes is controversial and very
much depends on which characteristic of Hp one considers. It
is well established that Hp expression is influenced by geno-
type: HP1-1 > HP1-2 > HP2-2.36 Some investigators have
demonstrated that the Hp1-1 dimer is more effective than the
Hp2-2 polymer in reducing the oxidative potential of Hb,37–39

although other reports suggest that there is no difference.40–42

Binding affinity to CD163 appears to be higher for Hb in
complex with Hp2-2 polymer compared to Hp1-1 dimer.31,43

However, studies looking at the uptake of Hb-Hp complexes
by CD163-expressing cells are less clear, with some reporting
no difference40 and others indicating an increased binding
affinity of both Hp1-1 dimer43 and Hp2-2 polymer,44

depending on the experimental conditions. Differences may
extend to inflammatory effects because binding of Hp1-1-Hb
complexes to CD163 results in secretion of the anti-
inflammatory cytokine interleukin-1032,45 at levels several-
fold higher compared to Hp2-2-Hb complexes.45 It is also
plausible that differences may be unrelated to Hb scavenging.
For example, the HP1-1 genotype appears to decrease en-
dothelial progenitor cell cluster formation.46 HP2 has also
been associated with poorer clinical outcome in people with
diabetes mellitus, ischemic heart disease, and infections,36

suggesting that it may influence outcome after aSAH in
individuals with these comorbidities.

HP genotype may not influence outcome after aSAH, even if
there are differences betweenHP genotypes in Hb scavenging
efficiency. Recently, CD163 expression by neurons has been
demonstrated in animal models of cerebral hemorrhage.47

Because Hb is normally predominantly taken up in the CNS
bymicroglia, it has been proposed that this increased neuronal
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CD163 expression may lead to increased neuronal toxicity
through uptake of Hb.48 It is therefore possible that any po-
tential protective effect conferred by different HP genotypes
may be mitigated by increased neuronal toxicity. To date,
CD163 expression by human neurons in situ remains to be
demonstrated.

This IPLD analysis provides the most robust evidence to date
examining the relationship between HP genotype and out-
come after aSAH and has a number of strengths. First, this
study has the largest sample size to date,17 although still
smaller than usual for genetic studies. Second, the study
population was in HWE, excluding significant case missingness
or technical problems with genotype/phenotype ascertainment.
Third, a number of covariates known to affect outcome after
aSAH that have not been consistently controlled for in previous
studies were included in the analysis: age, WFNS grade, Fisher
grade, and treatment.23,49 Fourth, this study includes a large
number of unpublished studies identified through a network of
investigators worldwide. Fifth, it uses IPLD. Sixth, all analyses
were preplanned; the protocol was published before the analysis
was started; and the statisticians were blinded to the identities of
the study andHP genotypes (deidentification of the studies was
performed at the end, table e-7 available from Eprints, eprints.
soton.ac.uk/426525/). Finally, a comprehensive array of statis-
tical approaches was used.

There are several limitations. First, there was minor but sig-
nificant evidence of selection bias when patients in this study
were compared with both a hospital aSAH population23 and
a typical aSAH randomized controlled study,24 favoring
patients with a lower coiling rate compared to clipping and
a higher incidence of DCI. Second, this study was retro-
spective, and despite the collection of IPLD, the available data
limited the choice and number of covariates that could be
used. It does not control for other covariates known to be
important in predicting outcome after aSAH, including need
for CSF diversion and preoperative rebleeding,23 because of
a lack of data availability. In addition, although we have
controlled for follow-up time, the duration varied significantly
between studies. Future studies could examine Hp subunit
expression because the Hp α1 chain band intensity may be
prognostic in HP2-1 individuals.50
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