Teaching NeuroImages: Steroid-responsive leukoencephalopathy in inflammatory cerebral amyloid angiopathy

David Dongkyung Kim, MD, Teneille Gofton, MD, and G. Bryan Young, MD

Neurology® 2019;92:e2732-e2733. doi:10.1212/WNL.0000000000007612

Correspondence
Dr. Young
Bryan.young@lhsc.on.ca

An obtunded previously healthy 60-year-old woman was intubated with a 2-week history of headaches and 1-month history of memory loss. MRI was performed (figure 1). Digital subtraction angiography of the head, varicella-zoster virus PCR, immunoglobulin G in the CSF, hepatitis B/C, CSF cryptococcal antigen, HIV, Lyme serology, and syphilis screen were negative. The initial differential diagnosis included CNS vasculitis and intracerebral lymphoma. She was diagnosed with inflammatory cerebral amyloid angiopathy based on clinicoradiologic criteria (which has a sensitivity of 82% and specificity of 97%),1 with infarction suggesting amyloid-β-related angiitis subtype. Within a few days of steroids, she was fully alert, and repeat MRI 5 months later showed improvement of leukoencephalopathy (figure 2). Montreal Cognitive Assessment scores were 23/30 2 weeks after initiation of therapy and 22/30 5 months later.

Author contributions
D.D. Kim: study concept and design, preparation of manuscript. T. Gofton, G.B. Young: study concept and design, supervision of manuscript.

Study funding
No targeted funding reported.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Reference
Figure 2 Radiologic improvement after steroids

Comparison between initial imaging (A, D), around 3 weeks after initiation of steroid therapy (B, E), and after 5 months of corticosteroid therapy (C, F) showed improvement of leukoencephalopathy.
Teaching NeuroImages: Steroid-responsive leukoencephalopathy in inflammatory cerebral amyloid angiopathy
David Dongkyung Kim, Teneille Gofton and G. Bryan Young
Neurology 2019;92:e2732-e2733
DOI 10.1212/WNL.0000000000007612

This information is current as of June 3, 2019

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/92/23/e2732.full

References
This article cites 1 articles, 0 of which you can access for free at:
http://n.neurology.org/content/92/23/e2732.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
All Cognitive Disorders/Dementia
http://n.neurology.org/cgi/collection/all_cognitive_disorders_dementia
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise