Teaching NeuroImages: MRI findings in an infant with cavitating leukoencephalopathy

Annie Hong, MD, Peter Assaad, MD, and Shefali Karkare, MD

Neurology® 2019;92:e884-e885. doi:10.1212/WNL.0000000000006965

Correspondence
Dr. Hong
ahong2@northwell.edu

An 11-month-old previously healthy girl presented with irritability, weakness, and hypotonia following a febrile illness. Brain MRI revealed white matter signal abnormalities with diffusion restriction and cavitation of the corpus callosum (figure). Combined mitochondrial gene panel confirmed cavitating leukoencephalopathy secondary to a pathogenic variant, p.R386C, in the NDUFS1 gene, which encodes complex I.1 Cavitating leukoencephalopathy is a neurodegenerative disorder associated with genetic mutations of the mitochondrial complex proteins, characterized by acute neurologic deficits and progressive or intermittent clinical deterioration. Patients may have variable response to megavitamins, steroids, or IV immunoglobulin.2 She was treated with megavitamins and regained psychomotor milestones with no further events.

Study funding
No targeted funding reported.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Role</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annie Hong, MD</td>
<td>Cohen Children’s Medical Center</td>
<td>Corresponding author</td>
<td>Designed and conceptualized study, analyzed the data, drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Peter Assaad, MD</td>
<td>Long Island Jewish Medical Center</td>
<td>Author</td>
<td>Interpreted the data, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Shefali Karkare, MD</td>
<td>Cohen Children’s Medical Center</td>
<td>Author</td>
<td>Interpreted the data, revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>

Figure MRI brain

Sagittal T1-weighted image shows patchy leukoencephalopathy with cavitation affecting the corpus callosum and centrum semiovale, with relative sparing of underlying U-fibers and gray matter (A; arrowheads). Bilateral, symmetric T2 hyperintense white matter lesions on axial T2 fluid-attenuated inversion recovery did not enhance with contrast (B; arrows). Axial diffusion-weighted images demonstrate diffusion restriction (C; arrows).

MORE ONLINE

Teaching slides
links.lww.com/WNL/A819

From the Division of Child Neurology, Department of Pediatrics (A.H., S.K.), and Department of Radiology (P.A.), Cohen Children’s Medical Center, New Hyde Park, NY.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Copyright © 2019 American Academy of Neurology

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References
Teaching NeuroImages: MRI findings in an infant with cavitating leukoencephalopathy
Annie Hong, Peter Assaad and Shefali Karkare
Neurology 2019;92;e884-e885
DOI 10.1212/WNL.0000000000006965

This information is current as of February 18, 2019

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/92/8/e884.full

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/92/8/e884.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Imaging
http://n.neurology.org/cgi/collection/all_imaging
All Pediatric
http://n.neurology.org/cgi/collection/all_pediatric
Mitochondrial disorders
http://n.neurology.org/cgi/collection/mitochondrial_disorders
Mitochondrial disorders; see Genetics/Mitochondrial disorders
http://n.neurology.org/cgi/collection/mitochondrial_disorders_see_genetics-mitochondrial_disorders
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise