Optimizing in-hospital triage for large vessel occlusion using a novel clinical scale (GAI₂AA)

Tsuyoshi Ohta, MD, PhD, Ichiro Nakahara, MD, PhD, Shoji Matsumoto, MD, PhD, et al.

Cite as: Neurology® 2019;93:e1997-e2006. doi:10.1212/WNL.0000000000008550

Study objective and summary result
This study aimed to develop and validate a simple diagnostic scale for predicting proximal anterior circulation occlusions; the result was a highly sensitive and specific tool called the GAI₂AA scale.

What is known and what this paper adds
Rapid recognition of proximal anterior circulation occlusions is critical for the timely initiation of mechanical thrombectomy. The present study reports the development of a valid and potentially useful scale for detecting occlusions.

Participants and setting
The investigators analyzed data from distinct groups of acute ischemic stroke patients who were admitted to Japanese hospitals ≤4.5 hours after stroke onset. The derivation cohort comprised 429 patients who were treated at a center in Kochi between September 2012 and February 2017. The validation cohort comprised 259 patients who were treated at centers in Kochi, Aichi, and Fukuoka between March 2017 and February 2018.

Design, size, and duration
Proximal anterior circulation occlusions were detected with magnetic resonance angiography, CT angiography, or cerebral angiography performed ≤6 hours after stroke onset. The investigators used multivariable logistic regression analysis to retrospectively identify variables associated with occlusions in the derivation cohort. They then used receiver operating characteristic (ROC) analysis to set appropriate thresholds. The novel scale was then prospectively applied to the validation cohort, with scores being calculated before vascular imaging.

Main results and the role of chance
Occlusions were detected in 144 derivation cohort members (33.6%) and 100 validation cohort members (38.6%). The investigators developed the GAI₂AA scale, on which 2 points are assigned for the presence of gaze palsy, aphasia, or inattention; 1 point is assigned for the presence of arm paresis; and 1 point is assigned for the presence of atrial fibrillation. A cut-off score of 3 identified patients with occlusions with 91% sensitivity and 81% specificity.

Bias, confounding, and other reasons for caution
The study cohorts included elderly and functionally dependent patients who may not benefit from mechanical thrombectomy.

Generalizability to other populations
The present study’s reliance on data from a few Japanese centers may limit the generalizability of the results.

Study funding/potential competing interests
This study received no funding. Some authors report receiving lecture honoraria, publishing royalties, and research support from healthcare companies and the Supporting Organization for Medical Research and Education in Kochi. Go to Neurology.org/N for full disclosures.

Figure: ROC curves for the GAI₂AA scale in the (A) derivation and (B) validation cohorts.
Optimizing in-hospital triage for large vessel occlusion using a novel clinical scale (GAI

Tsuyoshi Ohta, Ichiro Nakahara, Shoji Matsumoto, et al.

Neurology 2019;93:e1997-e2006 Published Online before print October 24, 2019

DOI 10.1212/WNL.0000000000008550

This information is current as of October 24, 2019

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>This information is current as of October 24, 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>Updated Information & Services including high resolution figures, can be found at: http://n.neurology.org/content/93/22/e1997.full</td>
</tr>
<tr>
<td></td>
<td>This article cites 49 articles, 24 of which you can access for free at: http://n.neurology.org/content/93/22/e1997.full#ref-list-1</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 5 HighWire-hosted articles: http://n.neurology.org/content/93/22/e1997.full#otherarticles</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): Clinical trials Observational study (Cohort, Case control) http://n.neurology.org/cgi/collection/clinical_trials_observational_study_cohort_case_control</td>
</tr>
<tr>
<td></td>
<td>Critical care http://n.neurology.org/cgi/collection/critical_care</td>
</tr>
<tr>
<td></td>
<td>Infarction http://n.neurology.org/cgi/collection/infarction</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Permissions & Licensing Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Reprints Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>