Quantity and quality of mental activities and the risk of incident mild cognitive impairment

Janina Krell-Roesch, PhD, Jeremy A. Syrjanen, MSc, Maria Vassilaki, MD, PhD, MPH, et al.

Cite as: Neurology® 2019;93:e548-e558. doi:10.1212/WNL.0000000000007897

Correspondence
Dr. Geda
geda.yonas@mayo.edu

Study objective and summary result
The present study examined whether the numbers of mentally stimulating activities performed in midlife and late life are associated with the risk of incident mild cognitive impairment (MCI), and it found that a greater number of mentally stimulating activities, particularly if performed in late life, is associated with a reduced risk of MCI.

What is known and what this paper adds
Several investigations have reported that mentally stimulating activities are associated with reduced risks of cognitive decline. This investigation characterizes the association in the case of MCI.

Participants and setting
The investigators analyzed data from 2,000 individuals (49.9% male; minimum baseline age, ≥70 years; median baseline age, 77.8 years) who participated in the Mayo Clinic Study of Aging (MCSA), a population-based study that follows residents of Olmsted County, Minnesota. These MCSA participants were cognitively unimpaired at baseline. The data analyzed in this investigation were collected between June 2006 and December 2016.

Design, size, and duration
The MCSA participants underwent cognitive evaluations at baseline and every 15 months during follow-up. These evaluations included neurologic examinations, ascertainments of cognitive risk factors, and neuropsychological testing. MCI diagnoses were made according to the revised Mayo Clinic criteria. Validated instruments were used to collect data on the participants’ levels of engagement in book-reading, craft activities, computer activities, game-playing, and social activities in midlife (i.e., the ages of 50–65 years) and late life (i.e., the year before baseline). Cox proportional hazards models were used to identify predictors of incident MCI.

Main results and the role of chance
Over follow-up (median duration, 5.0 years), 532 participants developed MCI. The factors associated with reduced risks of MCI included greater numbers of mentally stimulating activities in late life.

Table Association between the number of mentally stimulating activities in late life and the risk of incident MCI

<table>
<thead>
<tr>
<th>No. of mentally stimulating activities performed in late life</th>
<th>Hazard ratio (95% confidence interval) for incident MCI relative to engagement in 0 mentally stimulating activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.80 (0.58–1.10)</td>
</tr>
<tr>
<td>2</td>
<td>0.72 (0.53–0.99)</td>
</tr>
<tr>
<td>3</td>
<td>0.55 (0.40–0.77)</td>
</tr>
<tr>
<td>4</td>
<td>0.44 (0.30–0.65)</td>
</tr>
<tr>
<td>5</td>
<td>0.57 (0.34–0.96)</td>
</tr>
</tbody>
</table>

Bias, confounding, and other reasons for caution
Engagement in mentally stimulating activities was self-reported. Given the observational study design, reverse causality cannot be ruled out.

Generalizability to other populations
The reliance on data from a single Minnesota county may limit the generalizability of the results.

Study funding/potential competing interests
This study was funded by the NIH, various foundations, and various scholarly consortia. Some authors report receiving consulting fees, committee appointments, and funding from healthcare companies; receiving funding from the US Department of Defense; serving as investigators for industry- and nonprofit-sponsored clinical trials; and receiving publishing royalties. Go to Neurology.org/N for full disclosures.

A draft of the short-form article was written by M. Dalefield, a writer with Editage, a division of Cactus Communications. The authors of the full-length article and the journal editors edited and approved the final version.
Quantity and quality of mental activities and the risk of incident mild cognitive impairment
Janina Krell-Roesch, Jeremy A. Syrjanen, Maria Vassilaki, et al.
Neurology 2019;93;e548-e558 Published Online before print July 10, 2019
DOI 10.1212/WNL.0000000000007897

This information is current as of July 10, 2019

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/93/6/e548.full

References
This article cites 31 articles, 8 of which you can access for free at:
http://n.neurology.org/content/93/6/e548.full#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://n.neurology.org/content/93/6/e548.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Cognitive aging
http://n.neurology.org/cgi/collection/cognitive_aging
Cohort studies
http://n.neurology.org/cgi/collection/cohort_studies
MCI (mild cognitive impairment)
http://n.neurology.org/cgi/collection/mci_mild_cognitive_impairment

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.