Intracranial high-resolution vessel wall imaging in CADASIL

Eric D. Goldstein, MD, Jennifer J. Majersik, MD, MS, and Scott McNally, MD, PhD

Neurology® 2020;94:1040-1041. doi:10.1212/WNL.0000000000009588

Correspondence
Dr. Goldstein
eric.goldstein@hsc.utah.edu

A 64-year-old man with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (heterozygous, c.544C>T; p.Arg182Cys) underwent an intracranial high-resolution black-blood protocol vessel wall MRI (vwMRI). Intramural patchy gadolinium enhancement in the subcortical and leptomeningeal arteries and veins was noted, consistent with the histopathologic findings of CADASIL (figures 1 and 2).1,2 We hypothesize that vwMRI allowed for an in vivo view of the vasculopathy intrinsic to CADASIL. Pending investigation of larger cohorts, this imaging technique may provide a novel mechanism for understanding CADASIL progression and pathogenesis, as well as potentially serving as

Figure 1 Intracranial vessel wall MRI of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

Top row showing T1 precontrast axial images compared with bottom row showing T1 postcontrast mural enhancement of the subcortical and leptomeningeal arteries. Note cortical venous mural enhancement in the bottom right pane. Arrows indicate intramural enhancement.

Figure 2 Baseline white matter burden

Axial fluid-attenuated inversion recovery sequences show T2 subcortical white matter hyperintensities consistent with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Images provided for comparison.
a biomarker in future disease modification trials and aiding in the differential diagnosis for interpreting clinicians.

Study funding
No targeted funding reported.

Disclosure
The authors report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric D. Goldstein, MD</td>
<td>University of Utah, Salt Lake City</td>
<td>Design and conceptualization, drafted manuscript for intellectual content</td>
</tr>
<tr>
<td>Jennifer J. Majersik, MD, MS</td>
<td>University of Utah, Salt Lake City</td>
<td>Drafting and revision of manuscript for intellectual content</td>
</tr>
<tr>
<td>Scott McNally, MD, PhD</td>
<td>University of Utah, Salt Lake City</td>
<td>Drafting and revision of manuscript for intellectual content</td>
</tr>
</tbody>
</table>

References

The AAN is at Your Side

When you’re in the office, the AAN is at your side. The AAN is your #1 resource to support you and your care team. Whether it’s resources to help you and your staff provide the best care for your patients, ensure proper reimbursement, or maximize practice performance, the AAN is at your side. Access these resources today at AAN.com/view/practiceresources.

Visit the Neurology® Resident & Fellow Website

Click on Residents & Fellows tab at Neurology.org.

Now offering:
- *Neurology®* Resident & Fellow Editorial team information
- “Search by subcategory” option
- E-pearl of the Week
- RSS Feeds
- Direct links to Continuum®, Career Planning, and AAN Resident & Fellow pages
- Recently published Resident & Fellow articles
- Podcast descriptions
- Blogs by Editors and Resident & Fellow team members

- Find *Neurology®* Residents & Fellows Section on Facebook: facebook.com/AANResidentsAndFellows
- Follow *Neurology®* on Twitter: @GreenJournal #NeurologyRF
- Find *Neurology®* Residents & Fellows Section on Instagram: @aanbrain #NeurologyRF
Intracranial high-resolution vessel wall imaging in CADASIL
Eric D. Goldstein, Jennifer J. Majersik and Scott McNally
Neurology 2020;94;1040-1041 Published Online before print May 19, 2020
DOI 10.1212/WNL.0000000000009588

This information is current as of May 19, 2020

Updated Information & Services including high resolution figures, can be found at:
http://n.neurology.org/content/94/23/1040.full

References This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/94/23/1040.full#ref-list-1

Subspecialty Collections This article, along with others on similar topics, appears in the following collection(s):
MRI
http://n.neurology.org/cgi/collection/mri
Other cerebrovascular disease/ Stroke
http://n.neurology.org/cgi/collection/other_cerebrovascular_disease__stroke
Stroke in young adults
http://n.neurology.org/cgi/collection/stroke_in_young_adults

Permissions & Licensing Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise