Reversible brain shrinkage secondary to infant salt toxicity

Andrew C.H. Ho, MBBS, Sarah W.Y. Poon, MBBS, MRCPCH, DCH (HK), and Anderson C.O. Tsang, MBBS, FRCS

Neurology® 2020;94:1103-1104. doi:10.1212/WNL.0000000000009651

A previously healthy 9-month-old girl was obtunded due to marked hypernatremia. She was resuscitated with IV hydration with progressive correction of sodium level. CT brain scan on admission showed marked brain shrinkage, which resolved as the sodium level was corrected (figure).

Salt toxicity is rare but potentially fatal in children and should be suspected in severe hypernatremia without significant dehydration or metabolic cause. Children may recover without long-term sequelae but seizure is commonly reported when hypernatremia is corrected rapidly. In this patient, the culprit was excessive exogenous sodium intake from inappropriate weaning food.

Figure Reversible brain shrinkage due to salt toxicity

(A, B) Noncontrast CT scan with severe hypernatremia (194 mmol/L) shows cerebral parenchymal shrinkage with prominent subarachnoid space, enlarged Sylvian cistern, and acute subdural hemorrhage (arrows). (C, D) CT scan after correction of hypernatremia (155 mmol/L) shows reversed brain shrinkage with reduction in extraaxial CSF and subdural hemorrhage.

From the Division of Neurosurgery, Department of Surgery (A.C.H.H., A.C.O.T.), and Department of Paediatrics and Adolescent Medicine (S.W.Y.P.), Queen Mary Hospital, The University of Hong Kong.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Copyright © 2020 American Academy of Neurology
Study funding
No targeted funding reported.

Disclosure
The authors report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew C.H. Ho, MBBS</td>
<td>Division of Neurosurgery, Department of Surgery, Queen Mary Hospital, The University of Hong Kong</td>
<td>Data interpretation and drafting of manuscript</td>
</tr>
<tr>
<td>Sarah W.Y. Poon, MBBS, MRCPCH, DCH (HK)</td>
<td>Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong</td>
<td>Data interpretation and drafting of manuscript</td>
</tr>
<tr>
<td>Anderson C.O. Tsang, MBBS, FRCS</td>
<td>Division of Neurosurgery, Department of Surgery, Queen Mary Hospital, The University of Hong Kong</td>
<td>Study design and supervision</td>
</tr>
</tbody>
</table>

References
Reversible brain shrinkage secondary to infant salt toxicity
Andrew C.H. Ho, Sarah W.Y. Poon and Anderson C.O. Tsang
Neurology 2020;94;1103-1104 Published Online before print May 27, 2020
DOI 10.1212/WNL.0000000000009651

This information is current as of May 27, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/94/24/1103.full

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/94/24/1103.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
All Pediatric
http://n.neurology.org/cgi/collection/all_pediatric
Coma
http://n.neurology.org/cgi/collection/coma
Critical care
http://n.neurology.org/cgi/collection/critical_care

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2020 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.