NEUROIMAGES

Posterior primary progressive prosopagnosia

Structural and molecular imaging

Belen Pascual, PhD,* Joseph C. Masdeu, MD, PhD,* Quentin Funk, PhD, Paolo Zanotti-Fregonara, MD, PhD, Madison Shyer, BS, Elijah Rockers, BS, and Paul E. Schulz, MD

Neurology® 2020;94:360-361. doi:10.1212/WNL.0000000000009001

Correspondence

Dr. Pascual
bpascual@houstonmethodist.org

Figure ¹⁸F-FDG, ¹⁸F-flortaucipir, and ¹¹C-PBR28 PETs from a patient with amyloid-negative posterior primary progressive prosopagnosia

Greatest cortical thinning (top, yellow) corresponded to lowest metabolism and highest tau and inflammation uptake (arrows). Standardized uptake value ratios (SUVR) were obtained by referencing to the cerebellar gray matter. ¹¹C-PBR28 parametric images of total distribution volume (VT) were calculated using the Logan plot and a metabolite-corrected arterial input function.

*These authors contributed equally to this work.

From the Department of Stanley H. Appel Neurology (B.P., J.C.M., Q.F., P.Z.-F., M.S., E.R.) and the Nantz National Alzheimer Center, Houston Methodist Neurological Institute, TX; Weill Cornell Medical College (B.P., J.C.M., P.Z.-F.), New York, NY; and Department of Neurology (P.E.S.), McGovern Medical School of UTHealth, Houston, TX.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Copyright © 2020 American Academy of Neurology

Copyright © 2020 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
Amyloid-negative pathology underlying primary progressive prosopagnosia usually affects the tip of the right temporal lobe first. However, a 69-year-old right-handed man, with amyloid-negative PET imaging, had severe progressive prosopagnosia associated with changes in the right posterior temporo-occipital cortex, including the fusiform face area, but sparing the temporal lobe tip. Brain regions affected were documented by cortical thinning on MRI and by abnormal metabolism, tau, and inflammation on PET (figure). By age 71, he had developed signs of the clinical corticobasal syndrome (CBD), as manifested by apraxia, motor impersistence, rigidity, and a supranuclear eye movement disorder. CBD was heralded by right premotor involvement in his earlier cortical thickness study (figure).

Acknowledgment
Avid Radiopharmaceuticals provided the precursor for 18F-flortaucipir.

Study funding
The study was funded by the Chao, Graham, Harrison, and Nantz Funds from the Houston Methodist Foundation; Avid Radiopharmaceuticals provided the 18F-AV-1451 precursor free of charge.

Disclosure
B. Pascual reports no disclosures relevant to the manuscript. J. Masdeu is a consultant for General Electric Healthcare and has received research support from Avid Radiopharmaceuticals. Q. Funk, P. Zanotti-Fregonara, M. Shyer, and E. Rockers report no disclosures relevant to the manuscript. P. Schulz has received research support from Avid Radiopharmaceuticals. Go to Neurology.org/N for full disclosures.

References

Appendix
Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Role</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belen Pascual, PhD</td>
<td>Houston Methodist Neurological Institute, TX</td>
<td>Author</td>
<td>Conceptualization of study, data acquisition, data analysis, drafting and revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Joseph C. Masdeu, MD, PhD</td>
<td>Houston Methodist Neurological Institute, TX</td>
<td>Author</td>
<td>Conceptualization of study, drafting and revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Quentin Funk, PhD</td>
<td>Houston Methodist Neurological Institute, TX</td>
<td>Author</td>
<td>Data analysis, revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Paolo Zanotti-Fregonara, MD, PhD</td>
<td>Houston Methodist Neurological Institute, TX</td>
<td>Author</td>
<td>Data acquisition, data analysis, revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Madison Shyer, BS</td>
<td>Houston Methodist Neurological Institute, TX</td>
<td>Author</td>
<td>Data acquisition, data analysis, revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Elijah Rockers, BS</td>
<td>Houston Methodist Neurological Institute, TX</td>
<td>Author</td>
<td>Data analysis, revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Paul E. Schulz, MD</td>
<td>McGovern Medical School of UTHHealth, TX</td>
<td>Author</td>
<td>Data acquisition, revising the manuscript for intellectual content</td>
</tr>
</tbody>
</table>

Disputes & Debates: Rapid online correspondence

The editors encourage comments on recent articles through Disputes & Debates:

Access an article at Neurology.org/N and click on “MAKE COMMENT” beneath the article header. Responses will be posted as rapidly as possible.

Before submitting a comment to Disputes & Debates, remember the following:

• Disputes & Debates is restricted to comments about articles published in Neurology within the last 8 weeks
• Read previously posted comments; redundant comments will not be posted
• Your submission must be 200 words or less and have a maximum of 5 references; the first reference must be the article on which you are commenting
• You can include a maximum of 5 authors (including yourself)
Posterior primary progressive prosopagnosia: Structural and molecular imaging
Belen Pascual, Joseph C. Masdeu, Quentin Funk, et al.
Neurology 2020;94:360-361 Published Online before print January 21, 2020
DOI 10.1212/WNL.0000000000009001

Updated Information & Services
- including high resolution figures, can be found at: http://n.neurology.org/content/94/8/360.full

References
- This article cites 2 articles, 1 of which you can access for free at: http://n.neurology.org/content/94/8/360.full#ref-list-1

Permissions & Licensing
- Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions

Reprints
- Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise