Autoantibodies against the prion protein in individuals with PRNP mutations

Karl Frontzek, MD, PhD, Manfredi Carta, MD, Marco Losa, MD, et al., for the THAUTAN-MC Study Group

Cite as: Neurology® 2020;95:e2028-e2037. doi:10.1212/WNL.0000000000009183

Study objective
To determine whether naturally occurring autoantibodies against the prion protein (PrPC) are present in individuals with pathogenic PRNP prion disease mutations and controls, and if so, whether they are protective against prion disease.

What is known and what this paper adds
Antibodies against certain PrPC epitopes may be neuroprotective. This study did not find elevated anti-PrPC autoantibodies in PRNP mutation carriers, making a disease-modifying role of humoral anti-PrPC autoimmunity unlikely.

Participants and setting
For this case-control study, blood samples were collected from 124 individuals with various pathogenetic PRNP mutations (64.5\% female; mean age, 49.3 ± 16.5 [s.d.] years) and 78 control individuals (47.4\% female; mean age, 42.8 ± 13.9 [s.d.] years) who had a family history of genetic prion disease but did not have known pathogenetic PRNP mutations. The investigators obtained these samples through international patient organizations and prion disease reference centers.

Design, size, and duration
Antibody reactivity was measured using a newly developed sandwich ELISA assay for the detection of human IgG\textsubscript{1-4} antibodies against wild-type human prion protein. Multivariate linear regression models were constructed to analyze the primary outcomes. Robustness of results was examined in matched cohorts.

Primary outcome measures
The primary outcome was comparisons of autoantibody reactivity between (a) PRNP mutation carriers and wild-type individuals (b) PRNP mutation carriers with and without clinical signs of prion diseases.

Main results and the role of chance
Antibody reactivity to PrPC was similar between PRNP mutation carriers and wild-type controls (\(p = 0.61\), Table). Autoantibody levels were not influenced by specific PRNP mutation status nor clinical manifestation of prion disease. Post hoc analyses showed anti-PrPC autoantibody titers to be independent of personal history of autoimmune disease and other immunological disorders, as well as PRNP codon 129 polymorphism.

Bias, confounding, and other reasons for caution
The present study tested for autoantibodies against full-length, wild-type, recombinant human PrPC but did not test for autoantibodies against mutated PrPC or its scrapie conformer PrPSc.

Study funding/potential competing interests
This study was funded by the UK, EU, French, Swiss and US governments; the Frances and Augustus Newman Foundation; and the Prion Alliance. Some authors report additional competing interests. Go to Neurology.org/N for full disclosures.

Table: Effect of PRNP mutation and clinical signs of prion disease on anti-PrPC autoantibody reactivity

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Adjusted (\beta) coefficient (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRNP mutation</td>
<td>0.92 (0.70–1.20)</td>
</tr>
<tr>
<td>Clinical signs of prion disease</td>
<td>0.94 (0.61–1.46)</td>
</tr>
</tbody>
</table>

A draft of the short-form article was written by M. Dalefield, a writer with Editage, a division of Cactus Communications. The corresponding author(s) of the full-length article and the journal editors edited and approved the final version.
Autoantibodies against the prion protein in individuals with PRNP mutations
Karl Frontzek, Manfredi Carta, Marco Losa, et al.
Neurology 2020;95:e2028-e2037 Published Online before print February 25, 2020
DOI 10.1212/WNL.0000000000009183

This information is current as of February 25, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/95/14/e2028.full

References
This article cites 43 articles, 7 of which you can access for free at:
http://n.neurology.org/content/95/14/e2028.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All CBMRT/Null Hypothesis
http://n.neurology.org/cgi/collection/all_cbmrt_null_hypothesis
Autoimmune diseases
http://n.neurology.org/cgi/collection/autoimmune_diseases
Prion
http://n.neurology.org/cgi/collection/prion

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise