Teaching NeuroImages: Cytotoxic lesions of the corpus callosum in encephalopathic patients with COVID-19

Myriam Edjlali, MD, PhD, Aurélie Le Gal, MD, Martin Louvet, MD, Morgan Matt, MD, Christophe Leveque, MD, Caroline Diffre, MD, David Orlikowski, MD, PhD, Djillali Annane, MD, PhD, and Robert-Yves Carlier, MD, PhD, on behalf of The Garches COVID-19 Collaborative Group


Figure Typical aspect of cytotoxic lesion of the corpus callosum (CLOCC) in patients positive for COVID-19

Ovoid lesion of the splenium of the corpus callosum, with increased T2/FLAIR signal (A.a, A.b), diffusion-weighted imaging hyperintensity (B.a, B.c) with abnormal restricted diffusion on multichromatic apparent diffusion coefficient maps (B.b, B.d) (ADC values <500 × 10⁻⁶ mm²/s), and reduced T1 signal without enhancement (C).

Two men, aged 49 and 51 years, with acute encephalopathy and rapid clinical deterioration were transferred to the intensive care unit. Both were recently tested positive for coronavirus disease 2019 on nasopharyngeal swab. On brain MRI, a lesion of the splenium of the corpus callosum was found, with T2-FLAIR hyperintensity and restricted diffusion (figure). This pattern is characteristic of cytotoxic lesion of the corpus callosum, an entity described previously as secondary to an underlying cause such as infection, drug toxicity, subarachnoid hemorrhage, history of CNS malignancy, or metabolic disorders.1 These lesions are nonischemic lesions, usually transient and reversible on
follow-up. The underlying mechanism relies on the vulnerability of the splenium of the corpus callosum to cytokinopathy.

Study funding
No targeted funding reported.

Disclosure
The authors report no disclosures. Go to Neurology.org/N for full disclosures.

Appendix 1 Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myriam Edjlali, MD, PhD</td>
<td>APHP, DMU Smart Imaging, GH Université Paris-Saclay, France</td>
<td>Designed and conceptualized the study; analyzed the data; and drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Aurélie Le Gal, MD</td>
<td>APHP, GH Université Paris-Saclay, France</td>
<td>Major role in the acquisition of data</td>
</tr>
<tr>
<td>Martin Louvet, MD</td>
<td>Hôpital Privé de Parly II, Le Chesnay, France</td>
<td>Major role in the acquisition of data</td>
</tr>
<tr>
<td>Morgan Matt, MD</td>
<td>APHP, GH Université Paris-Saclay, France</td>
<td>Revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Christophe Leveque, MD</td>
<td>Hôpital Privé de Parly II, Le Chesnay, France</td>
<td>Revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>

Appendix 2 Coinvestigators
Coinvestigators are listed at links.lww.com/WNL/B238

Reference

NEW EPISODE

Neurology®
PODCAST
December 1, 2020

Idiopathic distal sensory polyneuropathy: ACTTION diagnostic criteria (see p. 1005)

In the first segment, Dr. Stacey Clardy talks with Dr. Roy Freeman about his paper discussing idiopathic distal sensory polyneuropathy. In the second part of the podcast, Dr. Clardy speaks with Dr. Justin McArthur about his research, work, and the National Academy of Medicine Award.

Disclosures can be found at Neurology.org.

CME Opportunity: Listen to this week’s Neurology Podcast and earn 0.5 AMA PRA Category 1 CME Credits™ by completing the online Podcast quiz.
Teaching NeuroImages: Cytotoxic lesions of the corpus callosum in encephalopathic patients with COVID-19
Myriam Edjlali, Aurélie Le Gal, Martin Louvet, et al.
Neurology 2020;95;1021-1022 Published Online before print September 16, 2020
DOI 10.1212/WNL.0000000000010880

This information is current as of September 16, 2020

Updated Information & Services
including high resolution figures, can be found at: http://n.neurology.org/content/95/22/1021.full

References
This article cites 1 articles, 0 of which you can access for free at: http://n.neurology.org/content/95/22/1021.full#ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles: http://n.neurology.org/content/95/22/1021.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Encephalitis
http://n.neurology.org/cgi/collection/encephalitis

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise