Abstracts

The SPID-GBA Study: Sex Distribution, Penetrance, Incidence, and Dementia in GBA-PD

Objective To provide a variant-specific estimate of incidence, penetrance, sex distribution, and association with dementia of the 4 most common Parkinson disease (PD)-associated GBA variants, we analyzed a large cohort of 4,923 Italian unrelated patients with primary degenerative parkinsonism (including 3,832 PD) enrolled in a single tertiary care center and 7,757 ethnically matched controls.

Methods The p.E326K, p.T369M, p.N370S, and p.L444P variants were screened using an allele-specific multiplexed PCR approach. All statistical procedures were performed using R or Plink v1.07.

Results Among the 4 analyzed variants, the p.L444P confirmed to be the most strongly associated with disease risk for PD, PD dementia (PDD), and dementia with Lewy bodies (DLB) (odds ratio [OR] for PD 15.63, 95% confidence interval [CI] = 8.04–30.37, p = 4.97 × 10 − 16; OR for PDD 29.57, 95% CI = 14.07–62.13, p = 3.86 × 10 − 19; OR for DLB 102.7, 95% CI = 31.38–336.1, p = 1.91 × 10 − 14). However, an unexpectedly high risk for dementia was conferred by p.E326K (OR for PDD 4.80, 95% CI = 14.07–30.24, p = 5.71 × 10 − 8), which, on the basis of the impact on glucocerebrosidase activity, would be expected to be mild. The 1.5–2:1 male sex bias described in sporadic PD was lost in p.T369M carriers. We also showed that PD penetrance for p.L444P could reach the 15% at age 75 years.

Conclusions We report a large monocentric study on GBA-PD assessing mutation-specific data on the sex distribution, penetrance, incidence, and association with dementia of the 4 frequent deleterious variants in GBA.

NPub.org/NG/9611a

Heterozygous Variants in DCC: Beyond Congenital Mirror Movements

Objective To perform a comprehensive characterization of a cohort of patients with congenital mirror movements (CMMs) in Sweden.

Methods Clinical examination with the Woods and Teuber scale for mirror movements (MMs), neuro-imaging, navigated transcranial magnetic stimulation (nTMS), and massive parallel sequencing (MPS) were applied.

Results The cohort is ethnically diverse and includes a total of 7 patients distributed in 2 families and 2 sporadic cases. The degree of MMs was variable in this cohort. MPS revealed 2 novel heterozygous frameshift variants in DCC: c.1466_1476del display a complex syndrome featuring MMs and in 1 case receptive-expressive language disorder, chorea, epilepsy, and agenesis of the corpus callosum. The second DCC variant, c.1729delG, was associated with a typical benign CMM phenotype. No variants in DCC, NTN1, RAD51, or DNAL1 were found for the 2 sporadic CMM cases. However, one of these sporadic cases had concomitant high-risk myelodysplastic syndrome and a homozygous variant in ERCC excision repair-like 2 (ERCC6L2). Reorganized corticospinal projection patterns to upper extremities were demonstrated with nTMS.

Conclusions The presence of chorea expands the clinical spectrum of syndromes associated with variants in DCC. Biallelic pathogenic variants in ERCC6L2 cause bone marrow failure, but a potential association with CMM remains to be studied in larger cohorts.

NPub.org/NG/9611b

Neurology.org/NG

Most-Read Articles

As of January 13, 2021

Blended Phenotype of Silver-Russell Syndrome and SPG50 Caused by Maternal Isodisomy of Chromosome 7

Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation

Genotype-phenotype correlations in patients with de novo KCNQ2 pathogenic variants
Federica Malerba, Giulio Alberini, Ganna Balagura, et al. 2020;6: e528. doi.org/10.1212/NXG.000000000000528

New recessive mutations in SYT2 causing severe presynaptic congenital myasthenic syndromes
Stéphanie Bauché, Alain Sureau, Damien Sternberg, et al. 2020;6: e534 doi.org/10.1212/NXG.000000000000534

Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy
Ivon Cuscó, Sara Bernal, Laura Blasco-Pérez, et al. 2020;6:e530. doi.org/10.1212/NXG.000000000000530