Baseline Blood-Brain Barrier Leakage and Longitudinal Microstructural Tissue Damage in the Periphery of White Matter Hyperintensities

Danielle Kerkhofs, MD, Sau May Wong, PhD, Eleana Zhang, PhD, MD, et al.

Cite as: Neurology® 2021;96:e2192-e2200. doi:10.1212/WNL.0000000000011783

Study Question

What is the relation between baseline blood-brain barrier (BBB) permeability and the longitudinal change in parenchymal diffusivity over 2 years in the perilesional zone around white matter hyperintensities (WMH) in patients with cerebral small vessel disease (cSVD)?

What Is Known and What This Paper Adds

BBB disruption may be associated with microstructural alterations that ultimately lead to WMH. This investigation’s results suggest that BBB leakage at baseline is related to the 2-year change in parenchymal diffusivity in the perilesional zone of WMH. These results support the hypothesis that BBB impairment might play an early role in subsequent microstructural white matter degeneration as part of the pathophysiology of cSVD.

Methods

For this prospective longitudinal study, the investigators recruited 43 patients (58% male; mean baseline age, 68 ± 12 years) with sporadic cSVD (i.e., lacunar stroke or mild vascular cognitive impairment) through 2 Dutch medical centers between April 2013 and February 2015. At baseline, the participants underwent 3T MRI evaluations that included dynamic contrast-enhanced MRI scans that were used to quantify the extent of BBB permeability (i.e., leakage volumes and rates), and intravoxel incoherent motion imaging (IVIM), which permitted quantification of parenchymal diffusivity. At 2-year follow-up assessments, the participants underwent another round of IVIM. Two-year changes in parenchymal diffusivity (ΔD) in the perilesional zones were calculated and divided into 2-mm contours. The primary outcomes were relationships between baseline BBB permeability levels and ΔD values in the perilesional zones.

Results and Study Limitations

Within the perilesional zones, ΔD values increased by 0.10% (95% confidence interval [CI], 0.07%–0.13%; p < 0.01) per 2-mm contour closer to the lesions. Furthermore, ΔD values positively correlated with baseline BBB leakage volumes (r = 0.29; 95% CI, 0.06–0.52) and baseline BBB leakage rates (r = 0.24; 95% CI, 0.02–0.47). The present study’s limitations include a relatively short follow-up period, the lack of follow-up BBB permeability data, and an inability to establish causal relationships. The reliance on data from 2 Dutch centers may limit international generalizability.

Study Funding and Competing Interests

This study was funded by the European Union’s Horizon 2020 program, the Netherlands Organisation for Scientific Research, Hersenstichting, and Stichting de Weijerhorst. The authors report no competing interests. Go to Neurology.org/N for full disclosures.

A draft of the short-form article was written by M. Dalefield, a writer with Editage, a division of Cactus Communications. The corresponding author(s) of the full-length article and the journal editors edited and approved the final version.
Baseline Blood-Brain Barrier Leakage and Longitudinal Microstructural Tissue Damage in the Periphery of White Matter Hyperintensities
Danielle Kerkhofs, Sau May Wong, Eleana Zhang, et al.
Neurology 2021;96;e2192-e2200 Published Online before print March 24, 2021
DOI 10.1212/WNL.0000000000011783

This information is current as of March 24, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/96/17/e2192.full

References
This article cites 42 articles, 12 of which you can access for free at:
http://n.neurology.org/content/96/17/e2192.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
MRI
http://n.neurology.org/cgi/collection/mri
Other cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/other_cerebrovascular_disease__stroke

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise