A 34-year-old woman presented with a 1-year history of progressive apathy, executive dysfunction, and memory impairment. Examination revealed moderate frontal dysfunction and bipyramidal signs. MRI brain (figure 1) showed a symmetric leukoencephalopathy sparing subcortical U-fibers.

Evaluation for an acquired white matter disease was negative. Next-generation sequencing showed a pathogenic heterozygous missense mutation in exon 18 of CSF1R gene (p.Ile794Thr).

Figure 1 Core Features in T2, T2–Fluid-Attenuated Inversion Recovery (FLAIR), and T1 MRI Sequences

Axial T2-weighted images (A, B) show confluent symmetric frontal-predominant white matter hyperintensities sparing subcortical U-fibers (white arrowheads), hypointense in T1-weighted sequences (C, black arrowheads). Sagittal T2-FLAIR (D) shows corpus callosum hyperintensities and atrophy (arrow).
confirming the diagnosis of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). Inheritance is autosomal dominant or sporadic. Presence of symmetric or asymmetric nonenhancing white matter lesions with persistent diffusion restriction (figure 2) and corpus callosum thinning differentiates ALSP from acquired demyelination.1,2

Study Funding
No targeted funding reported.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavankumar Rudrabhatla, MD</td>
<td>Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India</td>
<td>Major role in acquisition of data and drafting of manuscript</td>
</tr>
<tr>
<td>Sekar Sabarish, MD</td>
<td>Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India</td>
<td>Major role in acquisition of data and interpretation of imaging data</td>
</tr>
<tr>
<td>Harikrishnan Ramachandran, MD</td>
<td>Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India</td>
<td>Study concept and design</td>
</tr>
<tr>
<td>Sruthi S. Nair, MD, DM</td>
<td>Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India</td>
<td>Study concept and design, and critical revision of manuscript</td>
</tr>
</tbody>
</table>

Figure 2 Persistent Abnormalities in MRI Diffusion Sequences

Diffusion-weighted images (A, B) show deep white matter diffusion restriction with corresponding low apparent diffusion coefficient (black arrows), persistent in similar sequences taken 4 months later (C, D).
Teaching NeuroImages: Rare Adult-Onset Genetic Leukoencephalopathy
Neurology 2021;96:e2561-e2562 Published Online before print November 18, 2020
DOI 10.1212/WNL.0000000000011233

This information is current as of November 18, 2020

Updated Information & Services including high resolution figures, can be found at:
http://n.neurology.org/content/96/20/e2561.full

References This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/96/20/e2561.full#ref-list-1

Subspecialty Collections This article, along with others on similar topics, appears in the following collection(s):
All Cognitive Disorders/Dementia
http://n.neurology.org/cgi/collection/all_cognitive_disorders_dementia
All Demyelinating disease (CNS)
http://n.neurology.org/cgi/collection/all_demyelinating_disease_cns
Leukodystrophies
http://n.neurology.org/cgi/collection/leukodystrophies

Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise