A 58-year-old woman presented with headache and nausea after resection of a craniocervical junction meningioma. CT head showed acute hydrocephalus (figure, A). CT ventriculogram showed no concern for CSF leak. Contrast remained in the ventricles on first postprocedure image (figure, B), but repeat CT head showed transependymal movement of contrast into brain parenchyma over the next several days (figure, C–F). Glymphatic clearance of intrathecal contrast has been shown to be reduced in patients with idiopathic normal-pressure
hydrocephalus, which may facilitate intraparenchymal oozing.1 It may linger after intrathecal contrast has washed out and is indistinguishable from blood without dual-energy CT.2

Study Funding

No targeted funding reported.

Disclosure

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryan J. Neth, MD, PhD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Designed and conceptualized report, drafted and revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Rafid Mustafa, MD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Designed and conceptualized report, drafted and revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Sherri Braksick, MD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Designed and conceptualized report, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Eelco F.M. Wijdicks, MD, PhD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Designed and conceptualized report, revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>

References

Teaching NeuroImages: Transependymal Oozing of Intrathecal Contrast Mimicking Intracerebral Hemorrhage

Neurology 2021;96:e2779-e2780 Published Online before print January 27, 2021
DOI 10.1212/WNL.0000000000011546

This information is current as of January 27, 2021

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/96/22/e2779.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 2 articles, 0 of which you can access for free at: http://n.neurology.org/content/96/22/e2779.full#ref-list-1</td>
</tr>
</tbody>
</table>
| Subspecialty Collections | This article, along with others on similar topics, appears in the following collection(s):
CT
http://n.neurology.org/cgi/collection/ct
Hydrocephalus
http://n.neurology.org/cgi/collection/hydrocephalus |
| Permissions & Licensing | Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions |
| Reprints | Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise |