Corpus Callosum Hyperintensity in Normal Pressure Hydrocephalus After Ventriculoperitoneal Shunt

Jinyoung Youn, MD, PhD, Gabor G. Kovacs, MD, PhD, Paul Kongkham, MD, PhD, and Alfonso Fasano, MD, PhD

Correspondence
Dr. Fasano
alfonso.fasano@uhn.ca

Figure Imaging Results

A 73-year-old man presented with a 10-year history of gait instability, cognitive impairment, and urinary incontinence. Brain MRI (figure, A–C) and a positive response to tap test suggested a clinical diagnosis of normal pressure hydrocephalus (NPH). Ventriculo-peritoneal shunt improved his symptoms without complications but was associated with changes in corpus callosum and narrow ventricle, possibly suggesting overdrainage (figure, D–F). Callosal stretch injury is poorly studied in NPH and rarely reported in postmortem NPH pathology.1 Although detected in patients treated for obstructive hydrocephalus,2 postshunt callosal hyperintensity is a poorly understood and little-known radiologic sign.

Study Funding
No targeted funding reported.

Disclosure
J. Youn received speaker’s honoraria from SK Chemicals, Boston Scientific, and research support from Medtronic and Boston Scientific. G.G. Kovacs and P. Kongkham report no conflicts of

From the Department of Neurology (J.Y.), Sungkyunkwan University School of Medicine, and Neuroscience Center (J.Y.), Samsung Medical Center, Seoul, Korea; Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic (J.Y., G.G.K., A.F.), and Division of Neurosurgery, Department of Surgery (P.K.), Toronto Western Hospital; Division of Neurology (J.Y., G.G.K., A.F.), University of Toronto; and Krembil Brain Institute (G.G.K., A.F.), Toronto, Canada.

Go to Neurology.org/N for full disclosures.
A. Fasano received honoraria and/or research support from Abbott, AbbVie, Brainlab, Ceregate, Boston Scientific, Ipsen, Medtronic, Paladin Lab, Sunovion, and UCB Pharma. Go to Neurology.org/N for full disclosures.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jinyoung Youn, MD, PhD</td>
<td>Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Canada</td>
<td>Analyzed the data, drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Gabor Kovacs, MD, PhD</td>
<td>Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Canada</td>
<td>Interpreted the data, revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>

Paul Kongkham, MD, PhD Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Ontario, Canada Revised the manuscript for intellectual content

Alfonso Fasano, MD, PhD Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Canada Designed and conceptualized study, interpreted the data, revised the manuscript for intellectual content

References

COVID-19 and Neurologic Disease: Call for Papers!

The editors of Neurology are interested in papers that address the neurological aspects of COVID-19 infection and challenges to the management of patients with chronic neurological conditions who have, or are at risk for, the infection. Relevant papers that pass initial internal review will undergo expedited peer review and online publication. We will consider papers posted in preprint servers. Submit observational studies and clinical trials as Articles and case series and case reports under the Clinical/Scientific Notes category to https://submit.neurology.org/ today!

Practice Current: An interactive exchange on controversial topics

Share your own best practices.
Read commentary with expert opinion.
Explore results on an interactive world map.

NPub.org/NCP/practicecurrent
Corpus Callosum Hyperintensity in Normal Pressure Hydrocephalus After
Ventriculoperitoneal Shunt
Jinyoung Youn, Gabor G. Kovacs, Paul Kongkham, et al.
Neurology 2021;96:1096-1097 Published Online before print April 23, 2021
DOI 10.1212/WNL.0000000000012041

This information is current as of April 23, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/96/23/1096.full

References
This article cites 2 articles, 1 of which you can access for free at:
http://n.neurology.org/content/96/23/1096.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Education
http://n.neurology.org/cgi/collection/all_education
Hydrocephalus
http://n.neurology.org/cgi/collection/hydrocephalus
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise