Mediterranean Diet, Alzheimer Disease Biomarkers, and Brain Atrophy in Old Age

Tommaso Ballarini, PhD, Debora Melo van Lent, PhD, Julia Brunner, MSc, et al., on behalf of the DELCODE Study Group

Cite as: Neurology® 2021;96:e2920-e2932. doi:10.1212/WNL.0000000000012067

Study Question
Is following a Mediterranean-like diet (MeDi) associated with cognitive function, in vivo amyloid and phosphorylated-tau CSF markers of Alzheimer disease (Aβ42/40 ratio, pTau181), and brain atrophy?

What Is Known and What This Paper Adds
Several lines of evidence suggest that MeDi adherence protects against cognitive decline, brain atrophy, and amyloid pathology. This investigation’s results confirm that MeDi may be a protective factor against memory impairment and mediotemporal atrophy and suggest that these associations might be explained by a decrease of amyloid and tau-pathology.

Methods
For this cross-sectional study, the investigators analyzed data from 512 individuals (52.7% female; mean age, 69.5 ± 5.9 years) who participated in the German DZNE Longitudinal Cognitive Impairment and Dementia Study (DELCODE). This sample comprised 169 cognitively normal participants and 343 individuals at risk of developing Alzheimer disease (AD), including 53 first-degree relatives of patients with AD, 209 patients with subjective cognitive decline, and 81 patients with mild cognitive impairment. MeDi adherence was assessed using the Food Frequency Questionnaire. Brain volume outcomes were generated via voxel-based morphometry on T1-MRI and cognitive performance with a comprehensive neuropsychological test battery. Aβ42/40 ratio and pTau181 levels were measured in 226 participants. Linear regression models were used to assess the association between adherence to the MeDi, cognition, brain atrophy, CSF biomarkers, and their interplay.

Results and Study Limitations
Participants with greater MeDi adherence had larger mediotemporal gray matter volumes, better memory performance, higher Aβ42/40 ratios, and lower pTau181 levels. Mediotemporal gray matter volumes mediated the association between MeDi adherence and memory, and MeDi adherence favorably moderated the associations between Aβ42/40 ratios, pTau181 levels, and mediotemporal gray matter atrophy. A limitation of the present study is that its cross-sectional design precludes any causal inferences. Furthermore, the MeDi pattern in this German cohort might differ from the 1 in Mediterranean regions.

Study Funding and Competing Interests
This study was funded by the German Center for Neurodegenerative Diseases and the German Federal Ministry of Education and Research. Some authors report receiving personal fees from healthcare companies. Go to Neurology.org/N for full disclosures.

Copyright © 2021 American Academy of Neurology
Mediterranean Diet, Alzheimer Disease Biomarkers, and Brain Atrophy in Old Age
Tommaso Ballarini, Debora Melo van Lent, Julia Brunner, et al.
Neurology 2021;96:e2920-e2932 Published Online before print May 5, 2021
DOI 10.1212/WNL.0000000000012067

This information is current as of May 5, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/96/24/e2920.full

References
This article cites 50 articles, 12 of which you can access for free at:
http://n.neurology.org/content/96/24/e2920.full#ref-list-1

Citations
This article has been cited by 5 HighWire-hosted articles:
http://n.neurology.org/content/96/24/e2920.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Alzheimer disease
http://n.neurology.org/cgi/collection/alzheimers_disease
Memory
http://n.neurology.org/cgi/collection/memory
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise