Pearls & Oy-sters: Divergence Nystagmus

Eunjin Kwon, MD, Ju-Young Lee, MD, Hyo-Jung Kim, PhD, Jeong-Yoon Choi, MD, PhD, and Ji-Soo Kim, MD, PhD

Neurology® 2021;96:290-293. doi:10.1212/WNL.0000000000011273

Correspondence
Dr. Kim
jisookim@snu.ac.kr

Pearls
- Imbalance in the vergence system may give rise to disjunctive (disconjugate) horizontal nystagmus.
- Relative overaction of slow convergence may result in divergence nystagmus.
- Divergence nystagmus has rarely been reported in patients with lesions involving the pons and cerebellum.

Oy-sters
- While convergence or convergence-retraction nystagmus mostly indicates a dorsal mesodiencephalic lesion, divergence nystagmus occurs in lesions involving the midline cerebellum and dorsal pons.
- Divergence nystagmus supports an active neural innervation for divergence, rather than passive relaxation after convergence.

Disjunctive (disconjugate) nystagmus refers to nystagmus that beats in the opposite directions in both eyes.1 Disjunctive horizontal nystagmus almost always occurs as the form of either convergence or convergence-retraction nystagmus in lesions involving the dorsal mesodiencephalic junction, and has been ascribed to opposing saccades or impaired vergence.2,3 In contrast, divergence nystagmus is extremely rare. To the our knowledge, pure or predominant form of divergence nystagmus has been described in only a few patients with lesions involving the cerebellum or pons (table e-1, links.lww.com/WNL/B284),2,4 even though some patients with downbeat nystagmus may show a small divergent component.5

This report describes 2 additional patients with divergence nystagmus in association with lesions involving the dorsal pons and midline cerebellum with a literature review. These findings support distinct neural structures for divergence in the pons and cerebellum, and indicate an active neural innervation for divergence, rather than passive relaxation after convergence.

Case Reports

Patient 1
A 27-year-old woman was consulted for neuro-otologic evaluation 3 days after resection of cerebellar pilocytic astrocytoma mostly occupying the middle portion of the midline cerebellum around the fourth ventricle (figure, A). Before the surgery, the patient had had headache and intermittent fever for a few weeks. The findings of preoperative neurologic examination were unremarkable except swaying tandem gait. The operation was uneventful, but an extracranial ventricular drainage was placed the next day due to cerebellar and pontine edema and resultant hydrocephalus.

At the time of consultation, 5 days after the operation, neurologic examination showed spontaneous divergence nystagmus during visual fixation, gaze-evoked nystagmus during lateral gazes, more to the left, and limitation of abduction in the left eye. Convergence was intact.
Saccades were hypermetric rightward and hypometric leftward. Smooth pursuit was impaired bilaterally. Bedside head impulse tests showed perverted responses (downward corrective saccades after horizontal head rotation) in both horizontal directions. Ataxia was noted in the left upper and lower extremities. The patient was unable to sit unaided. Other findings of neurologic examination were unremarkable.

Video-oculography (VOG) 7 days after the surgery documented divergence nystagmus during visual fixation (figure, B), which changed into mostly right-beating nystagmus without visual fixation in darkness (figure, C; video 1). One month later, the patient reported resolution of dizziness and imbalance, and follow-up VOG documented disappearance of the divergence nystagmus.

Patient 2

An 18-year-old woman visited the emergency department with acute dizziness for 2 days probably due to a large cavernoma involving the right cerebellum and pons (3.0 × 5.3 cm; figure, D). She developed diplopia right after the visit. Examination showed right esotropia with limited abduction of the right eye along with rightward gaze palsy. She also showed spontaneous nystagmus beating outward in each eye and conjugate upbeat nystagmus with a clockwise component in the right eye and counterclockwise component in the left eye (figure, E; video 2). This nystagmus changed into mostly left-beating without visual fixation in darkness and during leftward gaze (figure, F; video 2). During rightward gaze, divergence nystagmus was suppressed and changed into upbeat. Convergence appeared normal. Horizontal smooth pursuit was impaired bilaterally. The patient also had hearing loss in the right ear and ataxia on the right side.

Emergent operation was arranged due to worsening nausea and declining mental status due to perilesional edema and increased intracranial hypertension. The pathologic finding was consistent with cavernous hemangioma. Three days after the surgery, follow-up examination with VOG showed a resolution of the divergence nystagmus along with improved headache, dizziness, and nausea. Only small upbeat nystagmus remained without visual fixation in darkness. The patient also showed improvement of the right abduction limitation, rightward gaze palsy, hearing loss, and ataxia on the right side.

Discussion

Our patients showed divergence nystagmus mostly during visual fixation in association with lesions involving the midline cerebellum and dorsal pons.

Disjunctive horizontal nystagmus may be ascribed to an imbalance of vergence eye movements. The predominance of convergent form of horizontal disjunctive nystagmus may be explained by the physiology of vergence eye movements. The
vergence neurons found in the mesencephalic reticular formation in a direct proportion to vergence angle and velocity, mainly during convergence. Those neurons can be subdivided into tonic cells (related to vergence angle), burst cells (related to vergence velocity), and tonic-burst cells (related to both vergence angle and velocity). These premotor neurons are mainly involved in convergence, and only a few are engaged in divergence.

Divergence has been considered a passive eye movement resulting from relaxation of convergence, and divergence palsy has been ascribed to impaired relaxation after convergence. Indeed, there has been limited evidence of pure vergence signals being released from the abducens nucleus. Furthermore, convergence and following divergence are engaged together, and the peak velocity of divergence is related to the preceding convergence tone and starting angle. A previous study also failed to find any localized pathology that may account for divergence paralysis, and instead reported a variety of more diffuse etiologies including Wernicke encephalopathy and Parkinson disease.

In these disorders, the divergence paralysis has been explained by bilateral abducens paresis, impaired inhibition of convergence due to diffuse neural dysfunction, or orbital dysfunction (elasticity theory). The NRTP has neural connections with the cerebellum. Two specific nuclei in the cerebellum, the interposed and fastigial nuclei, have connections with the supra-oculomotor nuclei in the cerebellum and causing divergence abnormalities support the theory of a separate divergence neural pathway or "divergence center." We report 2 patients with divergence nystagmus in association with lesions involving the midline cerebellum and dorsal pons. Imbalance in the vergence system may give rise to disjunctive horizontal nystagmus. While convergence or convergence-retraction nystagmus mostly indicates a dorsal mesencephalic lesion, divergence nystagmus may suggest a lesion involving the midline cerebellum and dorsal pons. Divergence nystagmus supports an active neural innervation for divergence, rather than passive relaxation after convergence.

Study Funding
This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B04935568).

Disclosure

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eunjin Kwon, MD</td>
<td>Seoul National University Bundang Hospital, Seongnam, South Korea</td>
<td>Analyzed and interpreted the data and wrote the manuscript</td>
</tr>
<tr>
<td>Ju-Young Lee, MD</td>
<td>Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea</td>
<td>Analyzed and interpreted the data and revised the manuscript</td>
</tr>
<tr>
<td>Hyo-Jung Kim, PhD</td>
<td>Seoul National University Bundang Hospital, Seongnam, South Korea</td>
<td>Analyzed and interpreted the data</td>
</tr>
<tr>
<td>Jeong-Yoon Choi, MD, PhD</td>
<td>Seoul National University Bundang Hospital, Seongnam, South Korea</td>
<td>Analyzed and interpreted the data and revised the manuscript</td>
</tr>
<tr>
<td>Ji-Soo Kim, MD, PhD</td>
<td>Seoul National University Bundang Hospital, Seongnam, South Korea</td>
<td>Designed and interpreted the data and revised the manuscript</td>
</tr>
</tbody>
</table>
References

Sign Up for the AAN’s Axon Registry
The AAN encourages its US members to show their interest in participating in the Axon Registry® by signing up today.

Use the Axon Registry to:
- Simplify reporting requirements under MACRA’s Quality Payment Program and avoid penalties while reducing your administrative burden
- Meet your MOC Part IV requirements and waive up to eight credits of Part II Self-Assessment
- Choose from 22 AAN neurology-specific quality measures that fit your practice
- Use data to understand your practice and identify where improvements can be made to patient care
- Manage your patients at a population level; look at a specific group of patients based on conditions, risk factors, demographics or outcome
- Demonstrate your value to payers when negotiating reimbursement
- Enjoy multi-year, fee-free access when you sign the agreements and integrate your EHR with the registry

Learn more at AAN.com/view/Axon and send your questions to registry@aan.com.

Visit the Neurology® Resident & Fellow Website
Click on Residents & Fellows tab at Neurology.org.

Now offering:
- Neurology® Resident & Fellow Editorial team information
- “Search by subcategory” option
- E-pearl of the Week
- RSS Feeds
- Direct links to Continuum®, Career Planning, and AAN Resident & Fellow pages
- Recently published Resident & Fellow articles
- Podcast descriptions
- Blogs by Editors and Resident & Fellow team members

Find Neurology® Residents & Fellows Section on Facebook: facebook.com/AANResidentsAndFellows
Follow Neurology® on Twitter: @GreenJournal #NeurologyRF
Find Neurology® Residents & Fellows Section on Instagram: @aanbrain #NeurologyRF
Pearls & Oy-sters: Divergence Nystagmus

Neurology 2021;96:290-293 Published Online before print December 4, 2020

DOI 10.1212/WNL.00000000000011273

This information is current as of December 4, 2020

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/96/6/290.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 9 articles, 2 of which you can access for free at: http://n.neurology.org/content/96/6/290.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>All Neuro-ophthalmology</td>
</tr>
<tr>
<td></td>
<td>Diplopia (double vision)</td>
</tr>
<tr>
<td></td>
<td>Nystagmus</td>
</tr>
<tr>
<td></td>
<td>Primary brain tumor</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>