A 31-year-old man presented with basilar aneurysm noted on high-resolution MRI (HR-MRI), which showed thrombosis and aneurysmal wall enhancement (figure, A and B). 4D-flow MRI revealed a vortex near the aneurysm ostium and slow flow in the aneurysm, which may suggest low rupture risk (video and figure, C and D). However, the aneurysm ruptured after 1 month of conservative treatment. Hemodynamics are important to aneurysm formation and rupture.1 In the aneurysm prerupture state, slow flow and thrombosis may promote inflammation, demonstrated as aneurysmal wall enhancement, and expedite aneurysm rupture.2 HR-MRI and

*These authors contributed equally to this work.
†These corresponding authors contributed equally to this work.

From the Department of Interventional Neuroradiology (F.P., H.N., X.T., B.Z., F.Y., A.L.), Beijing Neurosurgical Institute, Capital Medical University; Department of Biomedical Engineering (M.Z., R.L.), Center for Biomedical Imaging Research, Tsinghua University; Department of Neurosurgery (X.F.), Beijing Hospital, National Center of Gerontology; Graduate School of Peking Union Medical College (X.F.), Beijing, China; and Department of Radiology (C.Y.), University of Washington, Seattle.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
4D-flow MRI could be combined to identify dangerous aneurysms that mandate prompt intervention.

Study Funding
This work was supported by the Natural Science Foundation of China (81771233 and 81901197), the Natural Science Foundation of Beijing, China (7142032), the Specific Research Projects for Capital Health Development (2018-2-2041), Beijing Science and Technology Planning Project (Z18110009618035), and Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20190501).

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fei Peng, MS</td>
<td>Capital Medical University, Beijing</td>
<td>Study concept and design</td>
</tr>
<tr>
<td>Miaoqi Zhang, BE</td>
<td>Tsinghua University, Beijing</td>
<td>Acquisition and interpretation of data</td>
</tr>
<tr>
<td>Hao Niu, MS</td>
<td>Capital Medical University, Beijing</td>
<td>Acquisition and interpretation of data</td>
</tr>
</tbody>
</table>

References

Teaching Video NeuroImages: Wall Enhancement With Slow Blood Flow and Thrombosis Prior to Basilar Aneurysm Rupture
Fei Peng, Miaqi Zhang, Hao Niu, et al.
Neurology 2021;96:e962-e963 Published Online before print September 11, 2020
DOI 10.1212/WNL.0000000000010820

This information is current as of September 11, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/96/6/e962.full

References
This article cites 1 articles, 1 of which you can access for free at:
http://n.neurology.org/content/96/6/e962.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
MRI
http://n.neurology.org/cgi/collection/mri
Subarachnoid hemorrhage
http://n.neurology.org/cgi/collection/subarachnoid_hemorrhage

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise