An 18-year-old man with type 1 diabetes presented with acute bilateral arm and leg ballismus and oral-buccal dyskinesia. Glucose was 394 and HgbA1c >14. Imaging revealed T1 hyperintensity and susceptibility effect within the basal ganglia (Figure). Symptoms resolved over 48 hours with glucose control. A diagnosis of diabetic striatopathy was made. Diabetic striatopathy, also called hyperglycemic hemiballism/hemichorea, is most often described in older individuals with type 2 diabetes. Clinical symptoms often resolve with glycemic control; however, many patients require pharmacologic treatments. Deep brain stimulation may be beneficial in cases with disabling involuntary movements. Hyperglycemia-induced vasculopathy may contribute to microhemorrhages on imaging.1,2

Study Funding
The authors report no targeted funding.

Disclosure
J. Tencer reports no disclosures relevant to the manuscript; S. Yum reports no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.
References

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaclyn Tencer, MD</td>
<td>The Children's Hospital of Philadelphia, PA</td>
<td>Drafting/revision of the article for content, including medical writing for content, and study concept or design</td>
</tr>
<tr>
<td>Sabrina Yum, MD</td>
<td>The Children's Hospital of Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania</td>
<td>Drafting/revision of the article for content, including medical writing for content, and study concept or design</td>
</tr>
</tbody>
</table>
Teaching NeuroImage: Basal Ganglia T1 Hyperintensity and SWI Signal Diabetic Striatopathy in an 18-Year-Old Man With Type 1 Diabetes Mellitus

Jaclyn Tencer and Sabrina W. Yum

Neurology 2021;97:e2148-e2149 Published Online before print July 14, 2021
DOI 10.1212/WNL.0000000000012489

This information is current as of July 14, 2021