Clinical Reasoning: A 55-Year-Old Man With Odd Behavior and Abnormal Movements

Paul McIntosh, MD, and Burton Scott, PhD, MD

Neurology® 2021;97:1090-1093. doi:10.1212/WNL.0000000000012663

Section 1

A 55-year-old man with an extensive psychiatric history that included PTSD, anxiety, depression, and schizophrenia treated with quetiapine and trazodone was admitted to the hospital from an assisted living facility (ALF) for subacute-on-chronic failure to thrive and concern for psychosis, with recent worsening ongoing for 6 weeks. He was recently discharged from an outside psychiatric facility, and at the ALF, he demonstrated odd behavior such as eating food off the floor and spitting on staff, in addition to persistent poor intake of fluids, food, and medications because of issues with regurgitation and dysphagia. He had been evaluated by gastroenterology for more than a decade for these issues, in addition to chronically elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT). An extensive workup including CT imaging, esophagogastroduodenoscopy, esophagram, motility study, and a gastric emptying study was largely unremarkable. In the setting of his psychiatric history and reported history of frequently spitting out food, there was concern for a volitional component to his regurgitation.

Before hospitalization, he had been seen by outpatient neurologists for hyperkinetic movements and was given the diagnosis of Tourette syndrome at age 40 years. A diagnosis of akathisia was entertained because he had been on quetiapine for psychiatric symptoms for many years.

During this admission, the neurologic examination was notable for a thin man with frequent hyperkinetic movements affecting the trunk and bilateral upper extremities with a random and flowing quality, most prominent when sitting up. He denied experiencing an urge to move, and he could not suppress the movements. There was a mild milkmaid grip, and he was unable to maintain the tongue fully protruded for 5 seconds. Otherwise, his examination demonstrated normal extraocular movements, intact sensation to multiple modalities, and no overt appendicular ataxia. Deep tendon reflexes were difficult to assess because he would not cooperate with the examination. He was able to sit unassisted and walk unassisted, although he exhibited a staggering gait and his tandem gait was unsteady. He denied having a family history of similar symptoms. Laboratory workup was notable for a creatinine of 1.6 mg/dL (baseline 1.2 mg/dL) and elevated AST (304 U/L) and ALT (154 U/L).

Questions for Consideration:

1. What type of hyperkinetic movement disorder does this patient demonstrate?
2. What is on the differential based on history and examination?
Section 2

The patient was unable to perform sustained motor activity as demonstrated by a milkmaid hand grip (on squeezing the examiner’s fingers, the patient exhibited waxing-waning grip strength as if milking the examiner’s fingers) and difficulty with sustained tongue protrusion. These features of motor impersistence are characteristic of chorea as were the random limb movements that appeared to flow from one body part to another.1

His previous diagnosis of a tic disorder and possible akathisia were not consistent with his symptoms because he denied experiencing an urge to move and he could not suppress the movements. In addition, tics should consist of repetitive and stereotyped motor (or phonic) behaviors, whereas his movements were random and irregular. Furthermore, the diagnosis of Tourette syndrome requires a history of vocal and motor tics beginning before age 18 years.2

The differential diagnosis for chorea includes structural disorders affecting the basal ganglia or subthalamic nucleus (vascular insults, tumors, and demyelinating lesions), toxic-metabolic derangements (nonketotic hyperglycemia, electrolyte derangements, and carbon monoxide poisoning), drug-induced (dopaminergic therapy, stimulants, anticonvulsants, and tardive syndrome), infectious (toxoplasmosis, HIV encephalopathy, and prion disease), systemic autoimmune processes (lupus, antiphospholipid syndrome, and Sydenham chorea), and hereditary (Huntington disease, neuroacanthocytosis, brain iron accumulation disorders, and Wilson disease) and paraneoplastic syndromes (anti-CRMP-5, anti-NMDA, among others), in addition to other causes (polycythemia vera, chorea gravidarum, postpump chorea, and psychogenic).1

The temporal course of chorea can assist in narrowing down the differential diagnosis. Acquired or sporadic causes of chorea tend to present from acutely to subacutely, whereas hereditary causes tend to present more insidiously. The anatomic distribution of chorea can also assist in the differential diagnosis because unilateral chorea tends to occur with structural causes, nonketotic hyperglycemia, and oftentimes, antiphospholipid syndrome.1 Thus, based on this patient’s gradual-onset history and generalized chorea, a hereditary cause was suspected.

Question for Consideration:
1. What diagnostic studies would you recommend?
Section 3

The patient had neurologic, psychiatric, and liver abnormalities, raising concern for Wilson disease. Wilson disease has several abnormal movements associated with the condition, including tremor and ataxia. Chorea can be present, although it is not a typical manifestation. Serum copper and ceruloplasmin tests were recommended. These tests were both in the normal range.

Because of his chronic transaminitis (elevated AST and ALT), an extensive gastroenterologic and rheumatologic workup was performed but was unrevealing. Because the transaminitis could indicate muscle breakdown and liver pathology, a creatine kinase (CK) level was checked and was found to be elevated at 4,753 IU/L. From a chart review of outside records, his baseline CK ranged from 600 to 800 IU/L. His CK returned to his previous elevated baseline with the administration of intravenous fluids.

MRI brain with and without contrast was recommended, given his long-standing abnormal movements to assess for a structural etiology or evidence of a neurodegenerative process. This revealed atrophy of the bilateral caudate (Figure).

Questions for Consideration:
1. Based on the results of the serum studies and neuroimaging, what more targeted workup should be conducted to establish a diagnosis?
Section 4

The core subsets of neuroacanthocytosis include the autosomal recessive chorea-acanthocytosis (ChAc) caused by mutations in the VPS113A gene and the X-linked McLeod syndrome (MLS) caused by mutations in the XK gene encoding the Kell antigen on erythrocytes. ChAc has a mean age at onset of 35 years and tends to be associated with severe feeding dystonia and subsequent weight loss, difficulties with saccades, a “rubber man” posture and gait, and atrophy of the caudate nucleus.1,4,5 The feeding dystonia is described as uncontrollable tongue protrusion out of the mouth while eating, often resulting in biting the tongue and dropping food from the mouth.7 The rubber man appearance results from truncal instability and sudden, violent trunk spasms in these patients.8 MLS has a mean age at onset of 45 years and a higher risk of cardiomyopathy manifesting as atrial fibrillation, other arrhythmias, or dilated cardiomyopathy.1,4,5 Both ChAc and MLS may have chronic hyperCKemia.5 Rhabdomyolysis is a rare complication, as was present in this patient.5,9

Recognition of MLS is of particular importance because patients can experience life-threatening blood transfusion reactions to allogeneic blood transfusion.1

It is important to note that apart from the core neuroacanthocytosis syndromes, there are other degenerative movement disorders where acanthocytosis is occasionally seen. These include pantothenate kinase–associated neurodegeneration (PKAN) and Huntington disease–like 2 (HDLL2). PKAN is an autosomal recessive disorder that tends to present in childhood with dystonia as opposed to chorea and has a characteristic MRI signature called the “eye of the tiger sign” on T2-weighted imaging due to brain iron deposition, identified as T2 hyperintensity of the center of the globus pallidus interna surrounded by hypointensity.4 HDLL2 is an autosomal dominant disorder that is similar to both ChAc and MLS in that it is a phenocopy of Huntington disease, often presenting in young adulthood. It is most commonly seen in individuals of African descent. It is distinct from ChAc and MLS in that there are no muscle abnormalities and CK levels are normal.5,7 C9orf72 repeat expansion is another cause of hereditary chorea and is now recognized as the most common phenocopy of HD.1 However, acanthocytosis has not been documented in C9orf72 disease.

He and his family received genetic counseling regarding the diagnosis of neuroacanthocytosis. Symptomatic management with 12.5 mg of tetrabenazine daily for choreiform movements was initiated, with a plan to increase tetrabenazine by 12.5-mg increments weekly up to a goal dose of 25 mg twice daily. Our patient had a McLeod blood group phenotype sent, given the potential risk of future severe transfusion reactions. Unfortunately, the sample for our patient was inadequate for interpretation. Thus, his current diagnosis remains as neuroacanthocytosis of unspecified subtype.

Discussion

Neuroacanthocytosis syndromes are characterized by acanthocytes on blood smear (red cells with “spikes”), in addition to the presence of chorea, feeding dystonia, lip and tongue biting, tics, and neuropsychiatric symptoms. Notably, the neuropsychiatric features can precede overt motor features, causing diagnostic confusion with a tardive syndrome. Neuropathy, myopathy, cardiomyopathy, seizures, and parkinsonism may also occur.1

These include pantothenate kinase–associated neurodegeneration (PKAN) and Huntington disease–like 2 (HDLL2). PKAN is an autosomal recessive disorder that tends to present in childhood with dystonia as opposed to chorea and has a characteristic MRI signature called the “eye of the tiger sign” on T2-weighted imaging due to brain iron deposition, identified as T2 hyperintensity of the center of the globus pallidus interna surrounded by hypointensity.4 HDLL2 is an autosomal dominant disorder that is similar to both ChAc and MLS in that it is a phenocopy of Huntington disease, often presenting in young adulthood. It is most commonly seen in individuals of African descent. It is distinct from ChAc and MLS in that there are no muscle abnormalities and CK levels are normal.5,7 C9orf72 repeat expansion is another cause of hereditary chorea and is now recognized as the most common phenocopy of HD.1 However, acanthocytosis has not been documented in C9orf72 disease.

He and his family received genetic counseling regarding the diagnosis of neuroacanthocytosis. Symptomatic management with 12.5 mg of tetrabenazine daily for choreiform movements was initiated, with a plan to increase tetrabenazine by 12.5-mg increments weekly up to a goal dose of 25 mg twice daily. Our patient had a McLeod blood group phenotype sent, given the potential risk of future severe transfusion reactions. Unfortunately, the sample for our patient was inadequate for interpretation. Thus, his current diagnosis remains as neuroacanthocytosis of unspecified subtype.

Study Funding

The authors report no targeted funding.

Disclosure

P. McIntosh and B. Scott report no disclosures related to this work. Go to Neurology.org/N for full disclosures.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul McIntosh,</td>
<td>Duke University Medical</td>
<td>Drafting/revision of the article for content, including medical writing for</td>
</tr>
<tr>
<td>MD</td>
<td>Center</td>
<td>content, and study concept or design</td>
</tr>
<tr>
<td>Burton Scott,</td>
<td>Duke University Medical</td>
<td>Drafting/revision of the article for content, including medical writing for</td>
</tr>
<tr>
<td>PhD, MD</td>
<td>Center</td>
<td>content</td>
</tr>
</tbody>
</table>

References

Clinical Reasoning: A 55-Year-Old Man With Odd Behavior and Abnormal Movements
Paul McIntosh and Burton Scott
Neurology 2021;97;1090-1093 Published Online before print August 16, 2021
DOI 10.1212/WNL.0000000000012663

This information is current as of August 16, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/97/23/1090.full

References
This article cites 7 articles, 0 of which you can access for free at:
http://n.neurology.org/content/97/23/1090.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Movement Disorders
http://n.neurology.org/cgi/collection/all_movement_disorders
Chorea
http://n.neurology.org/cgi/collection/chorea
Huntington's disease
http://n.neurology.org/cgi/collection/huntingtons_disease

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise