An 80-year-old man developed an acute ischemic stroke and right posterior cerebral artery (PCA) occlusion (figure, A and B). Cardiac and carotid artery ultrasound examinations and 24-hour ECG monitoring did not identify any embolic sources. ECG-gated 4-D CT angiography (CTA) showed a noncalcified plaque with a superimposed mobile component on the ascending aorta (figure, C, and video 1). Virtual angioscopy using the datasets from ECG-gated 4-D CTA showed seaweed-like mobile component in the 3-D view (figure, D, and video 1). This was diagnosed as aortogenic embolism. The antithrombotic therapy was changed from clopidogrel to warfarin with an international normalized ratio of 2.0–3.0, and low-density lipoprotein cholesterol levels were controlled to less than 70 mg/dL by rosuvastatin.

Aortic plaque is one of the causes of cryptogenic stroke.\(^1\) ECG-gated 4-D CTA can evaluate aortic plaque mobility in the ascending aortic arch and the whole aortic arch. ECG-gated synchronization reduces motion artefact compared to non-ECG-gated CT and improves the assessment of plaque morphology and mobility.\(^2\) In addition, the virtual angioscopic view, which is an image processing technique to provide endoluminal views of blood vessels,\(^3\) can show plaque mobility in 3-D and make it easy to understand the positional relationships between the plaque and the aortic arch branches.
Study Funding
No targeted funding reported.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikito Saito, MD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Drafting of the manuscript, concept, design, and critical revision of manuscript for intellectual content, major role in the acquisition of data</td>
</tr>
<tr>
<td>Hiroyuki Kawano, MD, PhD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Drafting of the manuscript, critical revision of the manuscript for intellectual content</td>
</tr>
<tr>
<td>Masamichi Koyanagi, MSc</td>
<td>Kyorin University Hospital, Tokyo, Japan</td>
<td>Major role in the acquisition of data</td>
</tr>
<tr>
<td>Miho Gomyo, MD, PhD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Major role in the acquisition of data, critical revision of the manuscript for intellectual content</td>
</tr>
<tr>
<td>Kenichi Yokoyama, MD, PhD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Critical revision of the manuscript for intellectual content</td>
</tr>
<tr>
<td>Teruyuki Hirano, MD, PhD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Critical revision of the manuscript for intellectual content, study supervision, final approval of the article</td>
</tr>
</tbody>
</table>

References
Teaching Video NeuroImage: ECG-Gated 4-D CT Angiography Can Detect Aortic Plaque Mobility in Cryptogenic Stroke
Mikito Saito, Hiroyuki Kawano, Masamichi Koyanagi, et al.
Neurology 2021;97:e431-e432 Published Online before print April 26, 2021
DOI 10.1212/WNL.00000000000012054

This information is current as of April 26, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/97/4/e431.full

References
This article cites 3 articles, 1 of which you can access for free at:
http://n.neurology.org/content/97/4/e431.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
CT
http://n.neurology.org/cgi/collection/ct
Embolism
http://n.neurology.org/cgi/collection/embolism
Infarction
http://n.neurology.org/cgi/collection/infarction

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2021 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.