Association of Cardiovascular Risk Trajectory With Cognitive Decline and Incident Dementia

Bryn Farnsworth von Cederwald, PhD, Maria Josefsson, PhD, Anders Wåhlin, PhD, et al.

Cite as: Neurology® 2022;98:e2013-e2022. doi:10.1212/WNL.000000000000200255

Correspondence
Dr. Farnsworth von Cederwald
Bryn.farnsworth@umu.se

Study Question
How does the longitudinal trajectory of cardiovascular risk affect the incidence of cognitive decline and dementia?

What Is Known and What This Paper Adds
Recent research has shown that cardiovascular disease (CVD) risk is associated with midlife cognitive decline and increased dementia risk. However, few studies have examined the relationship of longitudinal changes in multiple CVD risk factors with regard to cognitive variation and dementia. This study demonstrates that an accelerated, compared to a stable or average, trajectory of longitudinal CVD risk can increase the risk of both dementia incidence and episodic memory (EM) decline.

Methods
For this longitudinal study, we examined 1,244 healthy community-dwelling participants from the prospective cohort Betula study, based in Umeå, Sweden. At every 5-year time point (T) across 20 to 25 years, data on CVD risk, EM performance, and dementia status were measured. The primary outcome of the study was dementia risk in an elderly subgroup (≥70 years of age at study start, n = 243) and EM decline in a younger subgroup (35–65 years of age at study start, n = 1,001). Participants were split into 3 groups, each of which had similar CVD risk at study start yet exhibited diverging risk trajectories over time. The groups showed an average, accelerated, or stable CVD risk progression. Analysis was performed with bayesian additive regression testing, a semiparametric machine-learning method. Risk ratios (RRs) were calculated at each time point (i.e., T2–T5).

Results and Study Limitations
Participants with a stable cardiovascular risk trajectory were less likely to develop Alzheimer disease (RR at T2: 3.3 [95% CI 2.6–17.5]; RR at T5: 5.7 [95% CI 1.9–6.7]) or vascular dementia (RR at T2: 3.3 [95% CI 1.1–16.6]; RR at T5: 4.1 [95% CI 1.5–7.6]) compared to those in the accelerated trajectory group or to exhibit EM decline (RR at T2: 1.4 [95% CI 1–1.9]; RR at T5 1.2 [95% CI 1–1.5]). Tests of tertile or quartile splits of CVD risk at baseline were not associated with outcome. A stable cardiovascular risk trajectory also appeared to partially mitigate Alzheimer disease dementia risk for APOE e4 carriers. Limitations include a lack of neuroimaging or biomarker assessment in the diagnosis procedure and an inability to determine whether the sequence of EM decline leading to dementia is causally triggered by an accelerated CVD risk trajectory.

Study Funding and Competing Interests
This work was funded by the Swedish Brain Foundation, Knut and Alice Wallenberg foundation, and the Swedish Foundation for Humanities and Social Sciences P17-0196:1. The authors declare no competing interests. Go to Neurology.org/N for full disclosures.
Association of Cardiovascular Risk Trajectory With Cognitive Decline and Incident Dementia
Bryn Farnsworth von Cederwald, Maria Josefsson, Anders Wåhlin, et al.
Neurology 2022;98:e2013-e2022 Published Online before print April 20, 2022
DOI 10.1212/WNL.0000000000200255

This information is current as of April 20, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/98/20/e2013.full

References
This article cites 46 articles, 8 of which you can access for free at:
http://n.neurology.org/content/98/20/e2013.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Alzheimer's disease
http://n.neurology.org/cgi/collection/alzheimers_disease
Cardiac
http://n.neurology.org/cgi/collection/cardiac
Cognitive aging
http://n.neurology.org/cgi/collection/cognitive_aging
Memory
http://n.neurology.org/cgi/collection/memory
Vascular dementia
http://n.neurology.org/cgi/collection/vascular_dementia

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise