A 52-year-old, HIV-negative woman presented with one year of bilateral painless central vision loss that worsened over 3 months. A medical examination revealed Argyll Robertson pupil (i.e., accommodates but does not react to light). Single-read next-generation sequencing (NGS) of the CSF identified 89 sequence reads corresponding to Treponema, elevated CSF protein, pleocytosis, negative antiaquaporin-4, antimyelin oligodendrocyte glycoprotein antibody levels, retinal nerve fiber layer thinning, and bilateral nerve sheath thinning.

Optical coherence tomography of the retinal nerve fiber layer (RNFL) revealed bilateral thinning (A). Fundus angiography was unremarkable (B).
enhancement (Figures 1–2). The patient received penicillin and oral prednisolone, which improved her vision. Infectious causes of optic neuritis are complex (Table). NGS is an emerging method with the potential to rapidly identify atypical optic neuritis.

Acknowledgment

We thank the following for their collaboration and resources: Genskey Medical Technology Co., Ltd, Beijing, China, and the Genskey Medical Database, a self-constructed microbial genome database based at the National Center for Biotechnology Information (Genbank).

Study Funding

The authors report no targeted funding.

Disclosure

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Table Common Pathogens of Infectious Optic Neuropathies

<table>
<thead>
<tr>
<th>Pathogen Type</th>
<th>Pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral</td>
<td>Herpes simplex virus, Epstein-Barr virus, chikungunya virus, dengue virus, influenza viruses, mumps virus, varicella-zoster virus, cytomegalovirus, human immunodeficiency virus, measles virus, Rift Valley fever virus, rubella virus, zika virus, West Nile virus</td>
</tr>
<tr>
<td>Bacterial</td>
<td>Treponema pallidum, Mycobacterium tuberculosis, Bartonella henselae bacterium, Rickettsii, bacterium Borrelia burgdorferi, Leptospires, Tropheryma whippelii, Mycobacterium leprae, Bacillus genus</td>
</tr>
<tr>
<td>Fungi</td>
<td>Cryptococcus neoformans, Mucorales</td>
</tr>
<tr>
<td>Parasites</td>
<td>Toxoplasma gondii, Toxocara canis, Toxocara cati, Plasmodium, Nematodes, Onchocerca</td>
</tr>
</tbody>
</table>

Note: All pathogens listed in the table can be detected through next generation sequencing.
Appendix (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qiang Li</td>
<td>Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China</td>
<td>Major role in the acquisition of data</td>
</tr>
<tr>
<td>Xuejun Fu</td>
<td>Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China</td>
<td>Major role in the acquisition of data and study concept or design</td>
</tr>
<tr>
<td>Liangyu Zou</td>
<td>Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China</td>
<td>Major role in the acquisition of data</td>
</tr>
</tbody>
</table>

Appendix (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qianhui Xu</td>
<td>Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content, major role in the acquisition of data, study concept or design, and analysis or interpretation of data</td>
</tr>
</tbody>
</table>

References

Teaching NeuroImage: Rapid Identification of Infectious Optic Neuritis by Next-Generation Sequencing
Ying Huang, Yulu Liu, Yongguang Liu, et al.
Neurology 2022;98:e872-e874 Published Online before print December 16, 2021
DOI 10.1212/WNL.0000000000013213

This information is current as of December 16, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/98/8/e872.full

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/98/8/e872.full#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://n.neurology.org/content/98/8/e872.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Immunology
http://n.neurology.org/cgi/collection/all_immunology
Bacterial infections
http://n.neurology.org/cgi/collection/bacterial_infections
Optic nerve
http://n.neurology.org/cgi/collection/optic_nerve
Visual loss
http://n.neurology.org/cgi/collection/visual_loss

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise