Protective Association of HLA-DRB1*04 Subtypes in Neurodegenerative Diseases Implicates Acetylated Tau PHF6 Sequences
Guo Luo, Yann Le Guen, Adityasai Ambati, Selina Yogeshwar, Vicente Peris-Sempere, Jean-Charles Lambert, Michael Greicius, Emmanuel Mignot, AD/PD Collaborators

Objective
To explore genetic association between human leukocyte antigen (HLA) and neurodegenerative diseases and investigate mechanisms behind the association.

Background
Pathophysiology of Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) involves accumulation of tau (neurofibrillary tangles) and amyloid-β-rich (amyloid plaques) aggregates in AD, α-synuclein-rich aggregates (Lewy bodies) in PD and TDP-43 aggregates in ALS, although these aggregates may also co-occur. Likewise, consensus is growing that tau may play a key role in PD and ALS as well.

Design/Methods
We analyzed HLA associations in ~176,000 individuals with PD or AD versus controls across ancestry groups. Pursuing this, we also compared postmortem brain density of neurofibrillary tangles and amyloid plaques in brain, tau and Aβ42 levels in cerebrospinal fluid (CSF) of ~5,000 individuals (controls and AD), and examined association of HLA in ~2,500 patient with pathologically demonstrated Lewy Body Dementia. This was followed by HLA binding and tetramer T cell studies.

Results
A shared genetic association was observed across AD and PD at rs601945 (PD: odds ratio (OR) = 0.84; 95% confidence interval, [0.80; 0.88]; p = 2.2 x 10-13; AD: OR = 0.91[0.89; 0.93]; p = 1.6 x 10-22) and with a protective HLA association recently reported in ALS. Hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03 and absent for HLA-DRB1*04:05. The same signal was associated with decreased neurofibrillary tangle (but not neuritic plaque) density postmortem and was more associated with lower tau levels than Aβ42 level changes in CSF. Furthermore, protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, but only when acetylated at K311, a modification central to aggregation. T cells recognizing this epitope were identified, showing relevance of this immune response in patients with neurodegenerative disorders.

Conclusions
An HLA-DRB1*04-mediated adaptive immune response, potentially against tau, decreases PD, AD and ALS risk, offering the possibility of new therapeutic avenues.

Disclosure: Guo Luo has nothing to disclose. The institution of Dr. Le Guen has received research support from EU MSCA. Dr. Ambati has nothing to disclose. Miss Yogeshwar has received research support from Einstein Center for Neurosciences. Mr. Peris Sempere has nothing to disclose. Dr. Lambert has nothing to disclose. Dr. Greicius has stock in SBGNeuro. Dr. Mignot has received personal compensation in the range of $5,000-$9,999 for serving as a Consultant for Takeda. Dr. Mignot has received personal compensation in the range of $500-$4,999 for serving as a Consultant for Jazz Pharmaceuticals. Dr. Mignot has received personal compensation in the range of $500-$4,999 for serving as a Consultant for Eisai Pharmaceuticals, Inc. Dr. Mignot has received personal compensation in the range of $5,000-$9,999 for serving on a Scientific Advisory or Data Safety Monitoring board for Takeda. Dr. Mignot has stock in Dreem. Dr. Mignot has stock in Centessa. AD/PD Collaborators has nothing to disclose.

Real-World Resource Utilization and Productivity Loss Among Patients With Myasthenia Gravis in Sweden: A Nationwide Population-Based Study
Qiaoyi Zhang, Qian Cai, Nurgul Batyrbekova, Lilla Di Scala, Shane Kavanagh

Objective
To assess annual healthcare resource utilization including inpatient admission and outpatient visits, employment status, and sickness absence associated with myasthenia gravis (MG).

Background
MG is a rare, chronic and debilitating autoimmune neuromuscular disease characterized by muscle weakness and fatigue that leads to hallmark symptoms including ptosis, dysphagia, dyspnea and limb weakness. Nearly 10% of patients are estimated to have treatment-refractory MG.

Design/Methods
Data were linked from four longitudinal nationwide population-based registries in Sweden. Patients with = 1 diagnosis of MG (ICD-10 G70.0) from 01/01/2001 to 12/30/2017 were selected. Date of 1st MG diagnosis in the national patient register was designated as index date. The healthcare resource use, employment status, and sickness absence for all cause and associated with MG within 1-year post-index period were evaluated.

Results
A total of 4,339 patients with newly diagnosed MG were identified from 2001 and 2017. Mean (±SD) age at index date was 59.8 (±19.5) years; 54% were female. During the first year post-MG diagnosis, 50.6% of patients had = 1 MG-related inpatient admission and 23.6% spent >1 month as an inpatient. Most patients (89.3%, n = 3,875) were employed; among those in employment (n = 1,250), 44.6% reported = 1 sickness absences within 1-year post-index period.

Conclusions
Patients with MG require considerable care both for MG and comorbidities over a period of years. An important sub-population of patients (e.g., those with MG crisis) may be the intensive users of both inpatient and outpatient care. Future research needs to detail treatment pattern and outcomes in this population.

Disclosure: Dr. Zhang has received personal compensation for serving as an employee of Janssen. Dr. Zhang has stock in Janssen. Ms. Cai has received stock or an ownership interest from J&J. Miss Di Scala has received personal compensation for serving as an employee of Janssen. Miss Di Scala has received stock or an ownership interest from J&J. Shane Kavanagh has received personal compensation for serving as an employee of Johnson & Johnson. Shane Kavanagh has received stock or an ownership interest from Johnson & Johnson.

Anti-myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorder (MOGAD) in a Pediatric Patient with Rare Presentation of a Cerebellar Tumefactive Lesion
Avni Sanghi, Grace Gombolay, Tuba Khan

Objective
NA.
Protective Association of HLA-DRB1*04 Subtypes in Neurodegenerative Diseases Implicates Acetylated Tau PHF6 Sequences
Guo Luo, Yann Le Guen, Adityasai Ambati, et al.
Neurology 2022;99;S17
DOI 10.1212/01.wnl.0000903160.72715.2d

This information is current as of December 5, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/99/23_Supplement_2/S17.1.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Cerebrospinal Fluid
http://n.neurology.org/cgi/collection/cerebrospinal_fluid
CT
http://n.neurology.org/cgi/collection/ct
Low pressure syndrome
http://n.neurology.org/cgi/collection/low_pressure_syndrome

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.