Training in Neurology: Adoption of resident teleneurology training in the wake of COVID-19: Telemedicine crash course

Alicia M Zha, MD; Lee S Chung, MD; Shlee S Song, MD; Jennifer J Majersik, MD, MS; Amanda L Jagolino-Cole, MD

1Department of Neurology Institute of Stroke and Cerebrovascular Disease, University of Texas Health Science Center, Houston TX

2Department of Neurology, University of Utah, Salt Lake City Utah

3Department of Neurology, Cedar Sinai Medical Center, Los Angeles California

Corresponding Author: Amanda Jagolino-Cole, amanda.l.jagolino@uth.tmc.edu

Search terms: teleneurology, education, telemedicine

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes. Videos, if applicable, will be available when the article is published in its final form.
Submission type: Resident and Fellow section – Other Contribution
Title Character count: 94
Abstract word count: 105
Number of Tables: 1
Word count of paper: 1375

Study funding: No targeted funding reported

Disclosure:
A.M. Zha reports no disclosures relevant to the manuscript.
L.S. Chung reports no disclosures relevant to the manuscript.
S.S. Song reports no disclosures relevant to the manuscript.
J.J. Majersik reports NIH/NINDS funding 1U24NS107228; Associate Editor for Stroke; Consulting fees for Foldax scientific advisory board; and Editorial Board member of Neurology.
A.L. Jagolino-Cole reports no disclosures relevant to the manuscript.
Abstract

The current COVID-19 pandemic has changed the way we engage patient care, with a move toward telemedicine-based healthcare encounters. Teleneurology is now being rapidly embraced by neurologists in clinics and hospitals nationwide but for many, this paradigm of care is unfamiliar. Exposure to telemedicine in neurology training programs is scarce despite previous calls to expand teleneurology education. Programs that do provide a teleneurology curriculum have demonstrated increased proficiency, accuracy, and post-training utilization among their trainees. With the current changes in healthcare, broad incorporation of teleneurology education in resident and fellow training after this pandemic dissipates will only serve to improve trainee preparedness for independent practice.
The current COVID-19 pandemic is forcing a reckoning of current healthcare delivery and expediting a rapid transition to telemedicine-based care. Even in 2017, the Telemedicine Work Group of the American Academy of Neurology (AAN) recommended a teleneurology curriculum as an elective rotation for trainees. How long ago 2017 seems now as we all hastily work to create operational teleneurology infrastructure in our clinics and hospitals. Although prior exposure in teleneurology is advantageous in tackling the complexities of moving to telehealth-based care, most of the neurology workforce is not formally trained in telemedicine. While we are far from fully understanding the long-term sequelae of this pandemic on our healthcare systems, broader exposure and increased comfort with teleneurology is imperative to prepare our trainees for the new world of medicine they will face after this current pandemic dissipates.

Contemporary Teleneurology Practice

Neurology has long recognized the power of telemedicine in addressing gaps in access to care. Telestroke became an established practice among stroke centers in the mid-2000s, prompted by the STRokE DOC trial demonstrating diagnostic accuracy in acute stroke care. In the outpatient setting, teleneurology is an alternative for some patients with chronic conditions and disability that make an in-person trip to a sub-specialty clinic difficult. Teleneurology support for outpatient neurology care is well-described in the recent update by the Telemedicine Work Group, whose comprehensive review outlines the importance of teleneurology in improving patient satisfaction, patient-associated costs, and caregiver burden, without sacrificing quality of care.

However, teleneurology is far from universally embraced. Limitations in the neurological exam over camera, dissatisfaction with potential technical failures, and a sense of depersonalization from a lack of physical interaction with patients contribute to slow acceptance of this care modality. Perhaps the greatest barrier to broader adoption of practice was the lack of infrastructure for reimbursement prior to our current public health crisis. Because the Centers for Medicare and Medicaid Services (CMS) relaxed billing regulations and privacy guidelines temporarily to allow providers to continue caring for their patients remotely, neurologists have the ability to prove the utility and importance of teleneurology. While current CMS reimbursement for teleneurology is intended for use only during the pandemic, routine teleneurology care - once shown feasible and effective – will become a standard tool for facilitating physician-patient interactions.

Are we preparing our trainees for this new world of healthcare? Regardless of reimbursement, the need for teleneurology is not going away after this crisis passes. Telestroke is already ubiquitous among vascular neurology divisions. Many academic departments are establishing tele-neurohospitalist capabilities for community hospitals. Five telehealth companies already provide nationwide teleneurology services. Setting up a teleneurology curriculum for trainees requires investment in time, effort, and finances from faculty and departments; however decreased overhead costs, improved patient satisfaction, and decreased patient attrition could potentially offset that cost.
Existing Models of Teleneurology Training

Dedicated teleneurology training is rare in neurology residencies. A literature search identified one fellowship and two resident training programs that describe formalized education in teleneurology. The University of California San Francisco implemented a teleneurology rotation for their PGY 3 and 4 residents. After two non-consecutive two-week blocks of didactics and rotating in telemedicine-based neurology outpatient clinics, residents had improved telemedicine knowledge, more favorable impression regarding teleneurology, and fewer perceived challenges in conducting the neurologic exam over a camera. The Mayo Clinic at Jacksonville, FL instituted a telesroke education program for their residents with didactics, simulation training, and real-time clinical practice. Residents now train to conduct pre-hospital assessments of potential stroke patients via telemedicine-enabled ambulances prior to arrival to their comprehensive stroke center, and their study on the effects of this training on door-to-needle times is on-going.

Vascular neurology training programs incorporating telestroke education illustrate the real-world effects of formalized telemedicine training. The University of Texas Health Science Center in Houston (UTHSC), Cedar Sinai Medical Center, and University of Utah Medical Center provide dedicated telestroke education in their respective stroke fellowships and track door-to-needle times for fellows and faculty as a training metric. A survey of graduates from UTHSC reported exposure to telemedicine as fellows led to proficiency in telestroke care, and almost a third of graduates from that program went on to start telemedicine networks in their respective practices. Review of thrombolytic metrics at the UTHSC telestroke network revealed that fellows took 9 minutes longer to administer alteplase from page time compared to attendings. This lag gradually decreased with increasing fellow experience and proficiency in performing teleconsultations, improving page-to-needle time by 1 minute for every 14 consults. Data from the University of Utah linked training and experience with more appropriate deployment of teleconsultations and avoidance of unnecessary utilization. Familiarity and repetition can clearly improve teleneurology competency and efficiency.

The AAN recognized the need to incorporate telemedicine in neurology training in 2013 and multiple subsequent publications outline recommended curricula, provide data on implemented programs, and demonstrate the real world benefits of systematic telemedicine training. Anecdotally, the residents at our three institutions have expressed increasing interest and curiosity regarding additional teleneurology exposure, which is magnified by the emergent changes in clinical practice implemented in response to the COVID-19 pandemic. Unfortunately, the lack of mandated education in this area has led to slow adoption of training in teleneurology. Vascular neurology fellowships are increasingly incorporating telestroke training, but even in centers with robust telestroke networks and training programs, resident exposure pre-pandemic was scarce.

Towards Broad Adoption of Teleneurology Education

Trainees would most effectively benefit from a teleneurology rotation, or other clinical exposure to teleneurology, mid-training, after mastering the in-person neurology encounter. The AAN Telemedicine Work Group recommends comprehensive training in clinical bedside neurology for the safe practice of teleneurology. ACGME neurology milestones or the Neurology Clinical Evaluation...
Exercise can guide evaluation for teleneurology competency. Adapted from our institutions’ programs, Table 1 offers an example of potential competencies and milestones for a teleneurology curriculum. Training can help hone skills such as “webside” manner, communication with telepresenters – both novice and experienced, interpretation of remote neurologic examinations, accuracy of diagnosis and treatment plans, efficient consultations/evaluations, and recognition of the limitations of teleneurology. Multi-user teleneurology software can provide trainees direct supervision by an attending physician, albeit sometimes at increased cost. Bringing residents and fellows to community hospitals for site visits, especially when activating a new site, can teach how to be a valued partner with local nurses and physicians and help better understand the patient experience. Faculty with experience in teleneurology and curated from a broad spectrum of subspecialties should assist in teaching skills. Inherent differences in conducting visits with patients with movement disorders versus dementia versus stroke should be highlighted during training. Post-training and lifelong learning of teleneurology can take the form of board examination questions and Maintenance of Certification Program activities.

Imbedding trainees in telemedicine consultations provided by senior Neurology staff may not be straightforward. Each institution must tackle local barriers in licensing and credentialing. Unfortunately, for programs servicing sites in multiple states, the new interstate licensure compact does not circumvent difficulties in licensing for fellows. Community hospitals do not lend themselves naturally to a teaching environment and many sites may hesitate to allow trainees on camera. Contractual educational agreements may alleviate some of this concern by assuring appropriate supervision and expectations. With these concerns in mind, teleneurology training should always begin with trainee observation of seasoned teleneurologists before graduating to more trainee-driven consultations. Initial encounters may be more manageable in less urgent, outpatient settings as residents and fellows gain familiarity with teleneurology skills. Standardized patients and simulation-based training may also provide some of the requisite experiences if live patient encounters are not feasible. The University of Utah uses SimLearn curricula to design telestroke simulations for new providers and have started to extend this to residents.

The current pandemic necessitates novel and flexible vehicles for emergency and longitudinal care and provides a unique opportunity to expand education and adoption of telemedicine as a routine form of healthcare delivery. The ACGME should request telemedicine curricula in accredited neurology residencies and fellowships to reflect this real world transition towards remote teleneurology consultations. Omitting teleneurology didactics leaves our trainees unprepared for the realities of modern-day neurology independent practice. It is high time for us to shed our teleneurophobia and implement the changes necessary for programs to adequately prepare our future neurologists.
Table 1. Example of Existing Teleneurology Competencies and Suggested Rotation Milestones

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Setting</th>
<th>Telepresence</th>
<th>Teleneurological Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
<td>• Background: minimal complexity and movement to preserve video quality. Avoid fans. Prefer a plain wall and a smaller room</td>
<td>• Note delta angle between camera and patient image on screen; to maintain eye contact practice looking counterintuitively at camera, not your screen, when speaking to patient</td>
<td>• Conduct the neurologic exam in order to minimize need to reposition cameras.</td>
</tr>
<tr>
<td></td>
<td>• Lighting: bright light in front of neurologist’s face. Avoid backlighting</td>
<td>• When multitasking, documenting in the electronic record or reviewing films and labs, be explicit to patient what you are doing so they do not feel you are not paying attention</td>
<td>• Utilization of exam demonstration and mimicking, particularly in the absence of an assistant</td>
</tr>
<tr>
<td></td>
<td>• Sound: Headset ideal to prevent feedback. If you get feedback, turn down the speaker volume. Avoid moving the microphone farther away which will worsen feedback</td>
<td>• Start encounter by obtaining all participant names; you will need to use names (instead of body language) to direct your questions and get attention</td>
<td>• Mental status: mostly observational. Mini-cog possible. With a trained assistant, more complex cognitive tests are possible.</td>
</tr>
<tr>
<td></td>
<td>• Ask the patient to minimize number of people to 1-2, and to minimize movement. Ideally, rest device on firm surface rather than hand-held</td>
<td>• Ask those speaking to come into view of the camera, both to get your attention and optimize use of directional microphones</td>
<td>• Cranial Nerves: Zoom in for eye movements, face, tongue. May rely largely on voluntary saccades to each direction. Zoom out for everything else. Visual fields can be checked with patient’s hands extended in front of their field of view or more formally if an</td>
</tr>
<tr>
<td></td>
<td>• Recommend a quiet well-lit room away from pets, children, non-essential staff. Encourage participants to speak one at a time.</td>
<td>• At visit conclusion, explicitly address the future nature of your relationship including follow-up and modality</td>
<td></td>
</tr>
</tbody>
</table>
• Zoom out slightly: Pronator drift, satellite sign, digiti minimi sign, finger escape sign. More formal strength testing is possible with an assistant. Test coordination with nose-full extension-nose, or to finger-nose-finger if assistant present.
• Zoom out more: Leg drift, heel-knee-shin, sensation of face/arms/legs, gait
• May be able to test more detailed strength, tone, reflexes, sensation if assistant present

Milestones

<table>
<thead>
<tr>
<th>Level</th>
<th>Milestones</th>
</tr>
</thead>
</table>
| **Level 1** | Performs a complete, organized, and relevant history in non-emergent setting
Demonstrates ability to adapt basic neurologic exam to telemedicine platform
Formulates an assessment and differential diagnosis
Able to provide initial treatment recommendations for inpatient and outpatient conditions |
| **Level 2** | Able to establish rapport with patient and family and address all members in the room
Performs an efficient, complete, and relevant history and comprehensive examination, including formal motor, sensory (3 modalities), cranial nerve, coordination, gait examinations
Localizes the lesion based on the teleneurological exam
Formulates an accurate assessment and differential diagnosis as assessed by a supervision attending
Identifies patients in need of in-person Neurologic evaluation and management. Identifies patients at high risk of neurologic deterioration
Identifies and addresses technical issues, and calls for assistance appropriately |
| **Level 3** | Able to evaluate urgent neurology consultation in ED setting efficiently via robot and without unnecessary delay
Able to conduct exam on comatose patient
May be able to test reflexes, tone, proprioception with assistance
Identifies and facilitates transfer independently, communicates efficiently with spoke hospital physicians and staff |
| Level 4 | Efficient communication with family and patient regarding patient condition and plans in acute neurologic conditions
Ability to conduct efficient history and physical exam for emergent consultations remotely with the assistance as needed from spoke staff and under direct monitoring of supervising hub physician
Demonstrates fluency with Emergency Medical Treatment & Labor Act (EMTALA) rules. Displays high level of professionalism in all communications
In non-emergent conditions outpatient or inpatient, able to adapt specialized examination tools for appropriate patients: UPDRS for Parkinson’s disease, ASIA spinal cord injury scale, e.g. MOCA for cognitive disorders |
| Level 5 | Serves as a role model for other trainees in performing telemedicine consultation including efficiently obtaining relevant history and examination, treating AIS and acute risk factors, post-thrombolytic triaging for surgical/endovascular procedures,
Efficiently coordinates transfers to higher level of care as necessary
Able to conduct goals of care conversations as appropriate with family |
Appendix 1. Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alicia M Zha, MD</td>
<td>Department of Neurology Institute of Stroke and Cerebrovascular Disease, University of Texas Health Science Center, Houston TX</td>
<td>Drafted the manuscript for intellectual content; major role in acquisition of data; design and conceptualization of editorial</td>
</tr>
<tr>
<td>Lee S Chung, MD</td>
<td>Department of Neurology, University of Utah, Salt Lake City Utah</td>
<td>Revised the manuscript for intellectual content; major role in acquisition of data</td>
</tr>
<tr>
<td>Shlee S Song, MD</td>
<td>Department of Neurology, Cedar Sinai Medical Center, Los Angeles California</td>
<td>Revised the manuscript for intellectual content; major role in acquisition of data</td>
</tr>
<tr>
<td>Jennifer J Majersik, MD, MS</td>
<td>Department of Neurology, University of Utah, Salt Lake City Utah</td>
<td>Revised the manuscript for intellectual content; major role in acquisition of data</td>
</tr>
<tr>
<td>Amanda L Jagolino-Cole, MD</td>
<td>Department of Neurology Institute of Stroke and Cerebrovascular Disease, University of Texas Health Science Center, Houston TX</td>
<td>Revised the manuscript for intellectual content; major role in acquisition of data; design and conceptualization of editorial</td>
</tr>
</tbody>
</table>
References:

Training in Neurology: Adoption of resident teleneurology training in the wake of COVID-19: Telemedicine crash course
Alicia M Zha, Lee S Chung, Shlee S Song, et al.

Neurology published online June 17, 2020
DOI 10.1212/WNL.0000000000010029

This information is current as of June 17, 2020