Pearls and Oy-sters: Anisocoria greater in the dark: It’s not just all about Horner pupil

Emily Witsberger MD; Sasha A. Mansukhani MBBS; John J. Chen MD PhD; M Tariq Bhatti MD

From: Department of Ophthalmology and Department of Neurology
Mayo Clinic College of Medicine, Rochester, Minnesota

Word Count: 1992 words
Title Character Count: 68 characters
Figure: 1
Supplemental Data: Video
Meeting Presentation: None

Corresponding author:
M. Tariq Bhatti
Bhatti.Muhammad@mayo.edu

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Search Terms:
1. Anisocoria
2. Adie
3. Tonic pupil
4. Horner
5. Light-near dissociation

Study funding: Mayo Foundation

Disclosures: The authors report no disclosures relevant to the manuscript.
**Pearls:**
1. An initial step in the evaluation of anisocoria is assessing the pupillary light reflex. If a pupil is not responsive to light, then the near pupillary reflex needs to be evaluated. Unilateral light-near pupil dissociation occurs due to a lesion of the ciliary ganglion, post-ganglionic parasympathetic pathway, retina or optic nerve.

**Oysters:**
1. In addition to a Horner pupil, anisocoria can be more pronounced in the dark with physiological anisocoria, miosis due to posterior iris synechiae, pharmacological miosis due to a parasympathomimetic agent (i.e. pilocarpine), traumatic miosis, iris ischemia and a chronic Adie pupil.

2. Adie tonic pupil most frequently presents with a mydriatic pupil, light-near dissociation, vermiform iris sphincter muscle movement and anisocoria greater in the light. However, a chronic Adie pupil may be characterized by a miotic pupil, light-near dissociation and anisocoria that is greater in the dark.

**Case Report**

An asymptomatic 65-year-old with no prior ocular surgery but a history of hypertension, hyperlipidemia, and hypothyroidism was noted to have a left miotic pupil during a routine ophthalmic examination. The anisocoria was noted to be greater in the dark and was interpreted as a left Horner pupil. No pharmacological testing was performed. Cranial magnetic resonance (MR) imaging, cervical MR angiography and chest radiograph were all normal. She was referred to our neuro-ophthalmology clinic for a second opinion.

On examination, there was no blepharoptosis, no facial anhidrosis, eye movements were full and cranial nerve function was normal. In the ambient light the right pupil measured 4.5 mm and the left 3.5 mm. In the dark, the right pupil measured 5.5 mm and the left 4.0 mm. The right pupil was round and responded briskly to light. The left pupil was irregular in shape, reacted poorly to light but
responded to near effort. Slit-lamp examination revealed poor temporal and inferior segmental iris sphincter movement. Following near stimulation, the left pupil slowly enlarged to its baseline size (Supplemental Video, http://links.lww.com/WNL/B274). The clinical findings were consistent with a longstanding or chronic Adie tonic pupil and no further intervention was required.

Discussion

Anisocoria, or >0.4 mm difference in pupil size, is a common clinical scenario representing a range of etiologies (Figure). The most common cause is physiologic anisocoria, with an estimated prevalence of 15 to 30% in the general population.\(^1\) In physiologic anisocoria, the pupil size difference is no larger than 1-2 mm and is typically the same in dark and light conditions. However, in some cases it can be more pronounced in the dark but the pupillary light reaction is intact and equal between the two eyes.\(^2\)

In general, anisocoria that is greater in the dark indicates disruption of the oculosympathetic pathway (i.e. Horner pupil), resulting in a miotic pupil that dilates slowly (i.e. dilation lag) following removal of light stimulus. The pupillary light reaction is intact. Additional clinical features include an ipsilateral upper and lower “upside-down” blepharoptosis, and facial anhidrosis (with a first or second order neuron lesion). Pharmacological testing with either topical cocaine or apraclonidine can assist in establishing the diagnosis. Neuroimaging of the entire oculosympathetic system from the hypothalamus to the lower cervical-upper thoracic spinal cord including the cervical internal carotid artery is recommended, although only 20% of cases will have abnormal neuroimaging findings.\(^3\)

If the anisocoria is greater in the dark but the miotic pupil does not react to light, this excludes a Horner pupil and expands the differential diagnosis to parasympathomimetic pharmacologic anisocoria, non-acute, dilated Adie tonic pupil, cranial nerve (CN) III aberrant regeneration, iris trauma (i.e. traumatic miosis), iris ischemia, or posterior synechiae.\(^4\) Pharmacologic miosis due to a parasympathomimetic or sympatholytic agent is often encountered in a patient with unilateral glaucoma being treated with pilocarpine or brimonidine. In cases of longstanding iris inflammation, prostaglandin release may cause pupillary miosis, and formation of posterior iris synechiae preventing normal pupillary dilation best seen with the slit-lamp. Iris sphincter dysfunction may also result from anterior chamber inflammation and iris trauma following blunt globe injury, or ischemia as seen in acute
angle closure glaucoma. In all these scenarios mentioned above there will be impaired pupillary reaction to both light and near effort, whereas a patient with an Adie tonic pupil will have light-near dissociation. Cranial nerve III aberrant regeneration, also known as oculomotor synkinesis, presents clinically with pupillary constriction with eye movement (gaze-evoked pupillary constriction), or upper eyelid elevation on attempted downgaze.

Since the early 1800s numerous physicians wrote of a myotonic pupil developing in an apparently healthy person following an initial phase of iridoplegia. In 1931, William John Adie published a report of 6 patients with a benign, asymptomatic, and usually unilateral pupillary disorder characterized by pupil reactivity to accommodation but not to light. He stressed the importance of differentiating this type of pupillotonia that now bears his name from the Argyll Robertson pupil associated with neurosyphilis. Unlike the bilateral miotic Argyll Robertson pupils which constrict to near stimulation only, Adie noted that patients with pupillotonia had unilateral pathology in 80% of cases, irregular pupil margins, and more distinct light-near dissociation with tonic dilation following near reaction. Similar reports by several other neurologists were published around the same time, including observations by Gordon Holmes regarding the association of the myotonic pupil with other neurologic symptoms including weak or absent deep tendon reflexes and orthostatic hypotension (Holmes-Adie syndrome). Adie tonic pupil tends to affect young to middle age female patients, with an average age of onset of 32 years and an estimated prevalence of 0.02%. In about 20% of cases, the fellow pupil may become involved at some time in the future. The Adie tonic pupil results from decreased neural input to the iris sphincter muscle from second-order parasympathetic neurons following damage to the ciliary ganglion ultimately resulting in denervation supersensitivity. By definition, an Adie tonic pupil or Holmes-Adie syndrome is an idiopathic condition, although a tonic pupil can be caused by local orbital trauma, autonomic dysfunction, herpes zoster or herpes simplex virus infection, or botulism toxicity.

Clinically, an Adie tonic pupil is characterized by poor to absent light reflex, intact near response and segmental paresis of the iris sphincter muscle described as a vermiform movement. In the acute phase, both the light reflex and near response are severely impaired, but the near response improves over several months due to aberrant regeneration. The majority of the parasympathetic fibers in CN III serve a role in accommodation, and their selective regeneration following injury leads to the characteristic light-near dissociation seen in Adie tonic pupil. Pupillary constriction to a near target is slow and sustained, and following accommodative constriction, the pupil slowly re-dilates. Denervated
segments of the iris stoma appear thin, and in 90% of cases more than two-thirds of the iris sphincter is affected. The iris sector palsy results from uneven distribution of postganglionic innervation to the iris sphincter muscle, leading to the characteristic slow and segmental constriction following light stimulation. Pharmacologic testing with topical cocaine results in dilation of an Adie tonic pupil as the sympathetic chain is not affected, whereas a patient with Horner syndrome will have no to minimal response to cocaine in the affected eye. Due to cholinergic supersensitivity, instillation of dilute (0.125%) pilocarpine will cause the tonic pupil to constrict, while there is no effect on the normal pupil. The post-synaptic receptor density significantly increases following an ocular autonomic neuropathy, producing an exaggerated response to eye drop testing. This phenomenon develops in a few hours to a few days following the denervation, although the exact timing is not known. A negative dilute pilocarpine test early after the presumed onset of anisocoria should be repeated in a few days. Alternatively, testing based on a different principle such as cocaine drop testing should be performed if the 0.5% apraclonidine test is negative. Of note, caution should be applied to the interpretation of the dilute pilocarpine test due to its limited specificity. Anisocoria due to a preganglionic CN III lesion may also yield a positive test in up to two-thirds of cases. Furthermore, in the situation of an acute (< 2 months) Adie tonic pupil, the dilute pilocarpine test may be negative.

In approximately 25% cases of an Adie pupil, the affected pupil decreases in size by 2-3 mm over the course of several years. In this case the abnormal pupil becomes the miotic pupil (referred to colloquially as “the little old Adie’s pupil”), and the anisocoria is more pronounced in the dark rather than light. The tonic pupil in all cases is characterized by slow re-dilation following light stimulus (if this reflex is at all preserved) or near reaction. A chronic miotic Adie pupil maintains this characteristic slow re-dilation. Thus, compared to the dilation of the normal pupil in a dark setting, the chronic miotic Adie pupil will remain relatively more constricted. It has been theorized that an Adie pupil becomes miotic overtime due to an increase in reinnervated fibers to the iris sphincter muscle and tonic contraction from accommodative fibers. Infrequently (< 2%), an acute Adie tonic pupil may present with a miotic pupil, which has been termed primary miotic Adie pupil. In both a chronic Adie and primary miotic Adie pupil, there will be light-near dissociation with sectoral iris muscle palsy.

Our patient highlights the importance of assessing the pupillary light reflex and careful visualization of the pupil movement in a patient with anisocoria. The anisocoria in both a Horner pupil and many chronic Adie pupils is more pronounced in the dark. However, a crucial difference between
these two disorders is the intact pupillary light reflex in a Horner pupil and light-near dissociation in an Adie tonic pupil. Identifying the difference between these two disorders can avoid unnecessary testing.

Video - http://links.lww.com/WNL/B274
References

Figure. Flow diagram for the evaluation of anisocoria

Footnotes:
1) Size of the pupils indicated are only a representative measure and do not indicate the absolute pupil size for a patient seen clinically.
2) If the light reflex is absent or poor, the presence or absence of the near reflex must be assessed.
3) Post-test anisocoria >0.8 mm indicates a positive result.
4) Result should be assessed at a minimum 45 minutes after instilling apraclonidine. Positive test is indicated by a reversal of anisocoria and improvement of ptosis.
5) Can be positive in a preganglionic cranial nerve III palsy.
6) Light-near pupil dissociation and segmental paresis of iris sphincter muscle (vermiform movement).
7) Cranial nerve III palsy will also manifest with upper eyelid ptosis and external ophthalmoplegia.
8) Pupil may react to 1–2% pilocarpine if the muscarinic blocking activity of the offending agent is wearing off.


Supplemental Video. A 65-year-old woman with a chronic miotic Adie pupil.

The left pupil responds poorly to light but briskly to near stimulation. Following near stimulation, the pupil constricts followed by a slow dilation. Infrared recording shows an irregularly shaped pupil with poor movement of the temporal and inferior segments of the iris margin.
# Appendix 1: Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emily Witsberger, MD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Major role in drafting the manuscript and video</td>
</tr>
<tr>
<td>Sasha A. Mansukhani, MBBS</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>John J. Chen, MD, PhD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>M. Tariq Bhatti, MD</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Design and conceptualized study; revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>

Copyright © 2020 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Pearls & Oy-sters: It's not just all about Horner pupil
Emily Witsberger, Sasha A. Mansukhani, John J. Chen, et al.
Neurology published online November 18, 2020
DOI 10.1212/WNL.0000000000011221

This information is current as of November 18, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2020/11/18/WNL.0000000000011221

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Clinical neurology examination
http://n.neurology.org/cgi/collection/clinical_neurology_examination
Pupils
http://n.neurology.org/cgi/collection/pupils

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise