Teaching Neuroimages: An imaging clue in a boy with developmental delay

AS Jyotsna DNB¹, K P Vinayan DM¹, Arun Grace Roy DM¹,
¹Department of Pediatric Neurology, Amrita Institute of Medical Sciences, Cochin, Kerala, India.
Search terms- Muscular dystrophy, Dystroglycanopathy, Cobblestone lissencephaly, Cortical dysplasia, Cerebellar cyst.

Publication history- Nil

Submission type- Teaching neuroimages article, Resident and Fellow section, Neurology.

Title Character count- 9

Number of tables- 0

Number of figures- Figures- 1 (A,B,C,D,E)

Word count of abstract – 100

Corresponding author:

Dr. K P Vinayan

E mail- vinayankp@aims.amrita.edu

Disclosure: The authors report no disclosures relevant to the manuscript.

Study funding: No targeted funding reported.
Abstract

6 year old boy of non-consanguineous parents presented with global developmental delay since infancy with history of two episodes of seizures in early childhood. Examination, showed hyperactivity subnormal cognition, tight heel cords, weakness of limbs along with hypotonia, and sluggish tendon reflexes. Serum CK was 2138 IU/l.

MR brain showed developmental malformations highly suggestive of alpha dystroglycanopathy variant of congenital muscular dystrophy. (Figure 1, A-E). Next generation sequencing showed two compound heterozygous variants of unknown significance in POMGNT-1 gene {Exon17 (chr1:46657796C>T) and Exon4 (chr1:46662444A>G)}, in silico predictions of which were probably damaging by PolyPhen-2 and damaging by Mutation Taster 2.

Appendix 1: Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS Jyotsna</td>
<td>Amrita Institute of Medical Sciences</td>
<td>Collected the clinical information and prepared the initial draft</td>
</tr>
<tr>
<td>KP Vinayan</td>
<td>Amrita Institute of Medical Sciences</td>
<td>Crafting the manuscript, revising it critically for the intellectual content and will be responsible for the correspondence.</td>
</tr>
<tr>
<td>Arun Grace Roy</td>
<td>Amrita Institute of Medical Sciences</td>
<td>Analysis of data and approving the final version to be published.</td>
</tr>
</tbody>
</table>
REFERENCES-

Figure 1. (Arrows added to mark all the salient MRI findings described in the figure legend)

MRI brain showing characteristic structural anomalies of congenital muscular dystrophy (POMGNT1 mutation)

A. T1 W axial images: Frontally predominant dysplastic cortex with poor grey-white matter differentiation with a cobblestone lissencephaly pattern (big arrow), islands of grey matter in white matter indicating heterotropia (small arrow)

B. T2 W axial images: Hyperintensities in central white matter (right arrows) with relatively normal subcortical white matter (left arrows).

C. T1 W sagittal images: Midbrain hypoplasia, fused colliculi with a thick tectum (big arrow) and relatively flat pons (small arrow)

D. T2 W axial Images: Lateral cerebellar cysts (arrows) frequently reported in POMGNT1 mutations.

E. T1 W axial images: Pontocerebellar hypoplasia (right big arrow) with poorly formed cerebellar foliation (left small arrows).
Teaching Neuroimages: An imaging clue in a boy with developmental delay
AS Jyotsna, K P Vinayan and Arun Grace Roy
Neurology published online December 4, 2020
DOI 10.1212/WNL.0000000000011286

This information is current as of December 4, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2020/12/04/WNL.0000000000011286.full

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise