Teaching Neuroimages: Distinguishing Papilledema from Pseudopapilledema using Optical Coherence Tomography

Jasvir Virdee BMedSc, MBChB
Ahoane Qureshi BMedSci, MBChB
Susan P Mollan MBChB, FRCOphth

Affiliations:
1. Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, United Kingdom (UK)

Corresponding Author:
Miss Susan P Mollan
susan.mollan@uwb.nhs.uk
Keywords: papilloedema, pseudopapilloedema, drusen, optic disc swelling, optical coherence tomography

Title Character Count: 84
Text Word Count: 150
Number of references: 2
Number of figures: 2
Study funding: No targeted funding reported.

Disclosure:

Jasvir Virdee and Ahoane Qureshi report no disclosures.

Article

A 71-year-old male presented to the emergency room with bilateral blurred optic discs, referred by his optometrist following a routine eye test. He had no visual or headache symptoms. Visual acuity was 20/20 bilaterally, fundoscopy at this time concurred with the optometry findings. Investigations for presumed papilledema were initially interpreted as normal (CT head/lumbar puncture). In clinic optical coherence tomography (OCT) imaging identified optic disc drusen (figure 1). The invasive investigations could have been avoided if an ophthalmology examination had been performed to exclude pseudopapilledema, as recommended.\(^1\) Optic disc drusen (ODD) are common in the general population (up to 2.4%).\(^2\) They are clearly visualised with OCT imaging including cross-sectional optic nerve head volume scans and blue autofluorescence (BAF), (figure 1D). Indeed, the CT head documented the drusen (figure 2). Although rarely ODD can coexist with papilledema, this is evident on both cross sectional OCT imaging and dilated slit-lamp biomicroscope exam.

Appendix 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jasvir Virdee BMedSc (Hons), MBChB 0000-0003-0679-9696</td>
<td>Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, United Kingdom (UK)</td>
<td>Data collection; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Ahoane Qureshi MBChB, BMedSci (Hons)</td>
<td>Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital,</td>
<td>Data collection; drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Birmingham, United Kingdom (UK)</td>
<td>Design and conceptualized study, study supervision, clinical care for the patient and critical comments during manuscript revision</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Susan P Mollan FRCOphth 0000-0002-6314-4437</td>
<td>Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, United Kingdom (UK)</td>
<td></td>
</tr>
</tbody>
</table>

Teaching Slides-http://links.lww.com/WNL/B299

References

Figure legends

Figure 1 Ocular imaging

Normal optic nerve head and optic nerve head showing multiple hyperreflective lesions A) Infrared image of the right optic nerve head. B) Infrared image of left optic nerve head, shows an irregular elevated shape with high reflectivity in the inferior nasal portion of the disc. C) Cross section OCT volume scan of left disc showing multiple hyperreflective changes around hyporeflective drusen (arrowed). D) OCT blue autofluorescence en face image of the optic nerve head showing multiple autofluorescent lesions throughout the inferior, nasal and superior portions of the nerve.
Figure 2 Neuroimaging

Axial CT Head slice showing a calcified drusen (bright white spot – arrowed) at the left optic nerve head.
Teaching Neuroimages: Distinguishing Papilledema from Pseudopapilledema using Optical Coherence Tomography
Jasvir Virdee, Ahoane Qureshi and Susan P. Mollan
Neurology published online December 8, 2020
DOI 10.1212/WNL.0000000000011353

This information is current as of December 8, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2020/12/08/WNL.0000000000011353.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Optic nerve
http://n.neurology.org/cgi/collection/optic_nerve

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise