Pearls & Oy-sters: Rosai-Dorfman Disease of the Central Nervous System

Kia Gilani MD*, Stephanie Kuntz MD*, David G. Munoz, MD, FRCP(C)2,3,4, and Raphael Schneider MD, PhD, FRCP(C)2,3,5

Corresponding author:
Raphael Schneider
E: raphael.schneider@unityhealth.to

Affiliation Information:
1. Department of Medicine, Division of Neurology, University of Toronto
2. Unity Health Toronto
3. St. Michael’s Hospital
4. Department of Laboratory Medicine & Pathobiology, University of Toronto
5. Department of Medicine, Division of Neurology, University of Toronto

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Contributions:
Kia Gilani: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Analysis or interpretation of data
Stephanie Kuntz: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Analysis or interpretation of data
David G. Munoz: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Raphael Schneider: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Number of characters in title: 72
Abstract Word count: 0
Word count of main text: 1444
References: 11
Figures: 2
Tables: 0

Search Terms: [131] All Immunology, [132] Autoimmune diseases, [213] All Oncology

Study funding: No targeted funding reported.
Disclosure: The authors report no disclosures relevant to the manuscript.
Pearls
1. Rosai Dorfman Disease (RDD) is a rare histiocytosis that typically presents with painless lymphadenopathy but can also present with neurological symptoms.
2. Sometimes described as a "non-neoplastic" lymphoproliferative disease, RDD often has a favorable prognosis.
3. Histology can be pathognomonic for RDD when lymphocytes are found embedded in the cytoplasm of macrophages, a phenomenon termed emperipolesis.

Oy-sters
1. RDD of the nervous system can be challenging to diagnose as it often presents with isolated and non-specific neurological symptoms.
2. RDD affecting the nervous system can be mistaken for meningioma, as both typically present as a uniformly enhancing extra-axial mass. RDD should be considered in the differential diagnosis for a mass resembling meningioma on imaging.
3. RDD can co-occur with autoimmune diseases including systemic lupus erythematosus, arthritis or autoimmune hemolytic anemia; its relationship to IgG4-related disease remains to be clarified.
Case presentation

A 61-year-old woman with a past medical history of Bell’s palsy, carpal tunnel syndrome, and remote hepatitis B infection presented to hospital with a chief complaint of right eye visual blurring. Six weeks before this presentation, she had a new severe headache in the right periorbital and temporal areas. She had also experienced burning pain in the distribution of the trigeminal nerve and dysesthesia in the right forehead, when brushing her hair. The headache and dysesthesia had spontaneously resolved the week before presentation to hospital. The patient’s visual exam was normal despite subjective mild right eye blurriness. On further cranial nerve examination, she did not endorse dysesthesia, allodynia, or decreased sensation in the trigeminal nerve distribution. The remainder of the cranial nerve examination, the motor examination including deep tendon reflexes, and the sensory, coordination, and gait examination were all unremarkable. Her visual changes self-resolved after two days without treatment.

A CT scan of the head identified a hypodense right temporal lobe mass, initially suspected to be a primary CNS neoplasm (Figure 1 A, B, & C). An MRI of the brain demonstrated a T2 hyperintense mass in the temporal lobe (Figure 1 D), with adjacent thickening and enhancing of soft tissue and pachymeningeal enhancement (Figure 1 E). In addition, there was suspected leptomeningeal enhancement over the bilateral frontoparietal lobes, remote from the primary mass. The infiltrative process also involved the right cavernous sinus, encased the carotid artery, and there was perineural spread into the right foramen ovale. There was no MRI evidence of visual system or ophthalmic division of the trigeminal nerve involvement, to explain her subjective right eye visual blurring or history of forehead dysesthesia. A dedicated MRI of the orbits or skull base was not done as the patient’s trigeminal symptoms had fully resolved prior to presentation, and her visual symptoms resolved after 2 days of admission. Given the diffuse meningeal involvement, it is possible that the optic or ophthalmic nerves had subtle areas of involvement that were not detected on a routine brain MRI. Furthermore, the ophthalmic nerve could have been affected in the cavernous sinus, where enhancement was seen.

Routine blood work and chemistry, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) were within normal limits. Serum protein electrophoresis, IgM, IgA, and IgG levels, including IgG4 levels were normal. Additional inflammatory workup including serum antinuclear antibodies (ANA), anti-neutrophil cytoplasmic antibody (ANCA), rheumatoid factor (RF) and angiotensin-converting enzyme (ACE) were negative. Serum hepatitis C virus (HCV) and human immunodeficiency virus (HIV) were negative. Hepatitis B antibody was positive, but core
antigen was negative, consistent with the patient's prior hepatitis B infection.

Further work up included a lumbar puncture. CSF analysis showed slightly elevated protein (0.89 mg/dL), mild lymphocytic pleocytosis (29 WBC/mm³, 90% lymphocytes), normal glucose. Neuroinfectious workup included cryptococcal antigen, varicella-zoster virus (VZV), herpes simplex virus (HSV) PCR, and acid-fast bacilli and was negative. CSF cytology showed numerous relatively small lymphocytes without evidence for lymphoma. A CT chest, abdomen, and pelvis did not reveal any lesions amenable to biopsy and no lung changes to suggest prior or current tuberculosis (TB) infection.

Given the essentially unremarkable workup of the lesion, a brain biopsy was pursued. The biopsy of the skull base, meninges, and brain parenchyma showed histiocyte, lymphocyte and plasma cell infiltrate with occasional lymphocytes embedded in the cytoplasm of macrophages, a phenomenon termed emperipolesis (Figure 2). The vast majority of the cells expressed CD163 confirming histiocyte predominance. These cells also expressed CD68 and S100, and but not CD1a, or langerin. There were no IgG4 positive plasma cells. A diagnosis of Rosai Dorfman Disease (RDD) was made and the patient was referred to the oncology clinic for further management.

Discussion

RDD is a rare histiocytosis first described in 1969, characterized by infiltration of activated histiocytes into affected organs. RDD has a diverse range of clinical presentations, making diagnosis and management challenging. The differential diagnosis of RDD is broad and can include TB, granulomatous polyangiitis, sarcoidosis, IgG4-related disease, juvenile xanthogranuloma, other types of histiocytosis (such as Erdheim-Chester disease or Langerhans Cell Histiocytosis), and malignancies including lymphoma, plasma cell granuloma, leukemia, and melanoma. Diagnosing RDD is often further complicated by absent or non-specific laboratory changes, including subtle elevation of ESR, hypergammaglobulinemia or mild to moderate anemia.

RDD typically presents with painless lymphadenopathy, often in the cervical chain. This can be associated with fever, weight loss, fatigue, and night sweats. While extra-nodal disease affecting a variety of organ systems is found in about 40% of people with RDD; the nervous system is affected in only about 5% of cases. In those latter cases, isolated CNS disease appears to be far more common than secondary spread to the CNS which may pose a diagnostic challenge to the neurologist.
The symptoms of RDD affecting the CNS are often non-specific and can include headache and seizures from mass effect or, as in our case, cranial nerve involvement. Patients with pituitary involvement can present with endocrine dysfunction. Disease of the spinal cord has been described which may result in weakness, gait difficulty, and sensory abnormalities. Modern imaging technologies can help limit the differential diagnosis and provide useful information regarding the extent of the disease. On CT head imaging, RDD lesions typically present as single well-circumscribed, extra-axial dural-based masses that are isodense or hyperdense. On MRI, the lesions are typically uniformly enhancing, isointense to brain parenchyma on T1 and T2, with some hypointensity seen on T2. This can be accompanied by vasogenic edema surrounding the lesion. Rarely RDD lesions can present as parenchymal lesions, that can spread to the dura and surrounding bone. RDD is easily confused for meningioma since lesions are typically dural-based, uniformly enhance and can have a dural tail on imaging. In such cases, digital subtraction angiography may help distinguish between meningioma and RDD, based on the absence of arterial-venous shunting and hypervascularity expected with meningioma.

A definitive diagnosis of RDD relies on biopsy. Histologically RDD histiocytes are positive for CD163, CD68, S100 antigens, which are found on macrophages and dendritic cells. RDD is CD1a and langerin negative, which distinguishes it from Langerhans Cell Histiocytosis (LCH). Like LCH, RDD is a clonal proliferative disease, characterized by the overrepresentation of blood cells derived from a single clone. Characteristically RDD presents with emperipolesis, where intact lymphocytes or erythrocytes are found within histiocyte cytoplasm. RDD commonly contains abundant IgG4-positive plasma cells, and differential diagnosis with IgG4-related disease (IgG4-RD) may be difficult. In a small series of RDD cases, the amounts of IgG4 positive cells were found to be similar to those seen in IgG4-RD suggesting overlap of RDD and IgG4-RD in some cases. Finally, RDD can co-occur with other immunologic diseases in about 10% of cases including systemic lupus erythematosus, arthritis or autoimmune hemolytic anemia.

Treatment of RDD does not appear to be necessary in many cases. However, treatment modalities including surgery, chemotherapy, immunotherapy, and radiation have been used, especially when RDD results in functional impairment. For RDD of the nervous system an algorithm including resection of lesions causing neurologic dysfunction and systemic therapy for unresectable or multifocal disease has been proposed.

Our case of biopsy-proven RDD illustrates several learning points. Subtle cranial nerve symptoms or signs may point to a disease process that affects the skull base. Perineural spread
into the right foramen ovale where the mandibular branch of the trigeminal nerve exits the skull and enhancement close to the intracranial part of the right optic nerve suggest that the transient sensory changes and blurred vision were caused by RDD. In the absence of evidence for systemic disease, we suggested a brain biopsy which showed the pathognomonic findings of RDD. We did not identify additional immunological abnormalities and the patient has since been co-managed with oncologists.
Legends

Figure 1: **CT and MRI:** CT head showing hypodensity in the right temporal lobe (A, B, C). MRI brain did not reveal any abnormalities on T1 imaging. T2 sequence showed a hyperintense lesion in the temporal lobe (D). Post gadolinium images revealed meningeal enhancement in close proximity to the right optic nerve (E, orange arrow), and diffuse pachymeningeal enhancement around the right temporal lobe (F and G, orange arrows). No diffusion restriction was seen in the temporal lobe mass.
Figure 2: **Brain biopsy**: Occasional lymphocytes embedded in the cytoplasm of macrophages, a phenomenon termed emperipolesis, best seen magnified in the inset (hematoxylin & eosin stain).
References

Pearls & Oy-sters: Rosai-Dorfman Disease of the Central Nervous System
Kia Gilani, Stephanie Kuntz, David G. Munoz, et al.
Neurology published online April 13, 2021
DOI 10.1212/WNL.0000000000012035

This information is current as of April 13, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/04/13/WNL.0000000000012035.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Immunology
http://n.neurology.org/cgi/collection/all_immunology
All Oncology
http://n.neurology.org/cgi/collection/all_oncology
Autoimmune diseases
http://n.neurology.org/cgi/collection/autoimmune_diseases

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2021 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.