Teaching Video NeuroImages: ECG-gated 4D-CTA Can Detect Aortic Plaque Mobility in Cryptogenic Stroke

Author(s):
Mikito Saito, MD1; Hiroyuki Kawano, MD, PhD1; Masamichi Koyanagi, MSc2; Miho Gomyo, MD, PhD3; Kenichi Yokoyama, MD, PhD3; Teruyuki Hirano, MD, PhD1

Corresponding author:
Hiroyuki Kawano, PhD
Email: hkawano@ks.kyorin-u.ac.jp

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Affiliation Information for All Authors: 1. Department of Stroke and Cerebrovascular Medicine, Kyorin University Faculty of Medicine, Tokyo, Japan; 2. Radiology Department, Kyorin University Hospital, Tokyo, Japan; 3. Department of Radiology, Kyorin University Faculty of Medicine, Tokyo, Japan;

Publication History: none

Word count of main text: 194
Number of characters in title: 72
Number of references: 3
Number of figures: 2 (including 1 video)
Number of tables: 0

Clinical Trial registration number: none

Supplemental: none

Statistical Analysis: none

Acknowledgments: none

Study Funding: No targeted funding reported.

Disclosures: The authors report no disclosures relevant to the manuscript.
An 80-year-old man developed an acute ischemic stroke and right posterior cerebral artery (PCA) occlusion (Figure A-B). Cardiac and carotid artery ultrasound examinations and 24-hour electrocardiogram monitoring did not identify any embolic sources. ECG-gated 4D-CTA showed a non-calcified plaque with a superimposed mobile component on the ascending aorta (Figure C, Video). Virtual angioscopy using the datasets from ECG-gated 4D-CTA showed the seaweed-like mobile component in the 3D view (Figure D, Video). This was diagnosed as aortogenic embolism. The antithrombotic therapy was changed from clopidogrel to warfarin with an international normalized ratio of 2.0 to 3.0, and low-density lipoprotein cholesterol levels were controlled to less than 70 mg/dL by rosuvastatin.

Aortic plaque is one of the causes of cryptogenic stroke. ECG-gated 4D-CTA can evaluate aortic plaque mobility in the ascending aortic arch and the whole aortic arch. ECG-gated synchronization reduces motion artefact compared to non-ECG-gated CT and improves the assessment of plaque morphology and mobility. Additionally, the virtual angioscopic view, which is an image-processing technique to provide endoluminal views of blood vessels, can show plaque mobility in 3D and make it easy to understand the positional relationships between the plaque and the aortic arch branches.
Legends

Figure. Radiologic findings

A. Non-contrasted brain MRI DWI sequence imaging shows a high-intensity signal in the right posterior cerebral artery (PCA) region.

B. Non-contrasted brain MRA sequence imaging shows the right PCA occlusion (arrowhead).

C. Coronal view of ECG-gated 4D-CTA shows the plaque (black-arrow) with the superimposed component (white-arrow).

D. Virtual angioscopy from the viewpoint of the ascending aorta (small-arrow in C) shows the superimposed component (white-arrow).

Video. ECG-gated 4D-CTA show the moving component wiggling with the pulsatile flow. Virtual angioscopy shows the seaweed-like mobile component on the proximal portion of the aortic arch branches.
Appendix 1: Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikito Saito, MD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Drafting of the manuscript, concept, design, and critical revision of manuscript for intellectual content, major role in the acquisition of data</td>
</tr>
<tr>
<td>Hiroyuki Kawano, MD, PhD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Drafting of the manuscript, critical revision of the manuscript for intellectual content</td>
</tr>
<tr>
<td>Masamichi Koyanagi, MSc</td>
<td>Kyorin University Hospital, Tokyo, Japan</td>
<td>Major role in the acquisition of data</td>
</tr>
<tr>
<td>Miho Gomyo, MD, PhD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Major role in the acquisition of data, critical revision of the manuscript for intellectual content</td>
</tr>
<tr>
<td>Kenichi Yokoyama, MD, PhD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Critical revision of the manuscript for intellectual content</td>
</tr>
<tr>
<td>Teruyuki Hirano, MD, PhD</td>
<td>Kyorin University, Tokyo, Japan</td>
<td>Critical revision of the manuscript for intellectual content, study supervision, final approval of the article</td>
</tr>
</tbody>
</table>

Teaching Slides-http://links.lww.com/WNL/B371

Video-http://links.lww.com/WNL/B372
References

Teaching Video NeuroImages: ECG-gated 4D-CTA Can Detect Aortic Plaque Mobility in Cryptogenic Stroke
Mikito Saito, Hiroyuki Kawano, Masamichi Koyanagi, et al.
Neurology published online April 26, 2021
DOI 10.1212/WNL.0000000000012054

This information is current as of April 26, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/04/26/WNL.0000000000012054.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
CT
http://n.neurology.org/cgi/collection/ct
Embolism
http://n.neurology.org/cgi/collection/embolism
Infarction
http://n.neurology.org/cgi/collection/infarction

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2021 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.