Pearls & Oy-sters: Primary Pineal Melanoma With Leptomeningeal Carcinomatosis
Ashley E. Aaroe MD, Isabella C. Glitza Oliva MD PhD, Nagham Al-Zubidi MD, Marc-Elie Nader MD, Diana Kaya MD, Sherise D. Ferguson MD, Chenyang Wang MD PhD, Gregory Fuller MD PhD, Rebecca A. Harrison MD

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Affiliation:

1. Department of Neuro-Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX;
2. Department of Melanoma Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX;
3. Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX;
4. Department of Neuroradiology, Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX;
5. Department of Neurosurgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX;
6. Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX;
7. Department of Pathology, Division of Pathology and Laboratory Medicine, MD Anderson Cancer Center, Houston, TX;

Correspondence:
Ashley Elimar Aaroe
AAaroe@mdanderson.org

Word Count: 1125 | Title Character Count: 58 characters

Supplemental Data: https://doi.org/10.5061/dryad.cvdncjt2w
Study Funding: No targeted funding reported.

Disclosure: The authors report no disclosures relevant to the manuscript.

Agreement: All authors and contributors agree to the conditions outlined in the Authorship and Contributorship section of the Information for Authors. All take responsibility for the information and figures contained within.

Search Terms: Melanoma, Pineal mass, Parinaud syndrome, Leptomeningeal Disease
Pearls:
- Pineal masses commonly present with Parinaud syndrome, a triad consisting of upgaze restriction, convergence-retraction nystagmus, and pupillary light-near dissociation from compression of the quadrigeminal plate.
- The differential diagnosis for pineal region tumors includes germ cell tumors, pineal parenchymal tumors, glioma, atypical teratoid rhabdoid tumor and metastatic disease. While exceedingly uncommon, primary pineal melanoma is also a known histopathologic entity that is suspected to arise from melanocytes in the pia mater of the pineal gland.
- Primary pineal melanoma is often treated with surgical resection, radiation, and either chemotherapy or immunotherapy. Some patients have received targeted therapy (such as vemurafenib in patients with \textit{BRAF V600E} mutation) with varying degrees of success.

Oy-sters:
- Cerebrospinal fluid (CSF) sampling can assist in the diagnosis of pineal tumor, specifically to test for germ cell tumor markers (alpha-fetoprotein, beta human chorionic gonadotropin, placental alkaline phosphatase), systemic tumor markers such as carcinoembryonic antigen, cell-free DNA or malignant cells on cytopathology.
- Pineal tumors can result in obstructive hydrocephalus, therefore lumbar puncture is not always a feasible option due to the risk of herniation. In patients with melanoma of the central nervous system (CNS), a careful survey consisting of systemic imaging and total body skin examination are warranted to exclude a separate primary melanoma lesion.
- The differential diagnosis for rapidly progressive bilateral sensorineural hearing loss includes meningitis, superficial siderosis, ototoxicity and leptomeningeal disease. Difficulty in speech comprehension in excess of pure tone audiometry may suggest involvement or compression of
the inferior colliculus.

Case Report:

A 62-year-old man presented with five months of rapidly progressive bilateral hearing loss. He was evaluated by a local provider who ascribed his symptoms to normal aging and prescribed hearing aids. He then developed intermittent binocular diplopia. He denied personal or family history of malignancy. Neuro-ophthalmologic examination revealed light-near dissociation with minimal retraction nystagmus on upward gaze consistent with Parinaud syndrome (Supplementary Figure 1, Data available from Dryad: https://doi.org/10.5061/dryad.cvdncjt2w). No papilledema was seen. Audiometry showed moderate to severe high frequency bilateral sensorineural hearing loss and absent word recognition skills. The remainder of his neurological examination was unremarkable.

Contrast-enhanced MRI of the brain demonstrated an intrinsically T1 hyperintense contrast-enhancing mass in the pineal region with extension into the tectum, midbrain and bilateral thalami, and protruding into the third ventricle resulting in ventriculomegaly (Figure 1). The MRI also demonstrated small nodules of T1 hyperintensity through the local ventricles and sulci in this region, concerning for leptomeningeal seeding. The vestibulocochlear nerves were not readily apparent due to imaging technique and slice thickness. Systemic imaging and physical examination showed no other sites of disease involvement. CSF sampling was deferred due to hydrocephalus and concern for herniation. MRI of the total spine with and without contrast showed no spinal cord lesions, nor radiographic evidence of leptomeningeal enhancement elsewhere in the neuroaxis.
He underwent a right frontal endoscopic biopsy of the lesion and intraoperatively black material was seen lining the ventricular surface (Supplementary Figure 2, Data available from Dryad: https://doi.org/10.5061/dryad.cvdncjt2w). Pathology revealed a high-grade pigmented epithelioid neoplasm with strong tumor cell expression of melanoma markers HMB45, MART1, tyrosinase as well as CD10 and MITF on differentiation marker immunophenotyping (Supplementary Figure 3, Data available from Dryad: https://doi.org/10.5061/dryad.cvdncjt2w). Mutational testing (particularly for *BRAF V600E, KIT, NRAS, GNAQ, CDKN2A*, and *MC1R*, which are all commonly mutated in melanoma) was not performed as only minimal tissue was available.

The patient received a dose each of checkpoint inhibitors ipilimumab and nivolumab, which were complicated by transaminitis. Following this, he was diagnosed with COVID-19 pneumonia and during hospitalization was found to have progression on MRI of the brain, associated with new left ptosis and worsening intermittent diplopia. He transiently required supplemental oxygen, but was not intubated, and was treated with a five day course of azithromycin, hydroxychloroquine, and cefepime. He was started on dexamethasone with improvement in his neurological symptoms. Tumor directed therapy was held for one month during which time he tapered off steroids and remained neurologically stable. Then, upon recovery from the viral pneumonia, he was dispositioned to palliative whole brain radiation therapy (WBRT) with boost to the third ventricle, and concurrent temozolomide chemotherapy. Following WBRT and three cycles of adjuvant temozolomide, he remained clinically and radiographically stable without appreciable change in his neurological symptoms.
Discussion:

Pineal region tumors commonly present with features of increased intracranial pressure such as headache, nausea, and vomiting due to obstructive hydrocephalus. Parinaud syndrome - a triad of upgaze restriction, convergence-retraction nystagmus, and pupillary light-near dissociation resulting from compression of the quadrigeminal plate – is also common and should raise suspicion for a pineal mass. The ‘setting-sun’ phenomenon, in which the lower lid partially covers the lower iris in pupil may also occasionally be seen, resulting from the upward gaze paresis.

Germ cell tumors comprise the most common pathologic entity in the pineal region, with nongerminomatous germ cell tumors (yolk sac tumor, choriocarcinoma, teratoma and embryonal carcinoma) occurring with greater frequency than pure germinomas [1]. These are followed by pineal parenchymal tumors (pineocytoma, pineal parenchymal tumor of intermediate differentiation and pineoblastoma) [2]. Other pathologies are possible as well and include neuroepithelial neoplasms (ependymoma, astrocytoma, and other glioma), atypical teratoid rhabdoid tumor (ATRT) or, rarely, metastatic disease from distant primary malignancies. As hydrocephalus is often observed, the risks and benefits of CSF sampling by lumbar puncture must be weighed carefully. For patients in whom lumbar puncture is safe, testing for germ cell tumor markers (alpha-fetoprotein, beta human chorionic gonadotropin, placental alkaline phosphatase), other tumor markers (such as carcinoembryonic antigen) or cell-free DNA (as may be indicated in the setting of systemic cancer), and cytology can be diagnostically useful [3].

Primary pineal melanoma is an extraordinarily rare entity first described in 1899, estimated to account for 3.6% of all primary central nervous system melanomas, which themselves only account for approximately 0.07% of intracranial neoplasms [4]. It is thought to
arise from melanocytes in the pia mater of the pineal interlobular septa, as neural crest cells are known to migrate into the leptomeninges during development [5]. Unsurprisingly then, leptomeningeal spread appears to be common in primary pineal melanoma. The optimal treatment paradigm is unknown, but commonly these tumors are treated with surgical resection, radiation, and either chemotherapy or immunotherapy. Some patients have received targeted therapy (such as vemurafenib in patients with BRAF V600E mutation) with varying degrees of success [6]. Ipilimumab and nivolumab are known to have activity in brain metastases from melanoma, and nivolumab has been shown to cross the blood brain barrier when administered systemically [7].

Bilateral rapidly progressive sensorineural hearing loss has a limited differential diagnosis, which most notably includes ototoxicity, meningitis, superficial siderosis, autoimmune disease, vasculitis, and leptomeningeal disease. In contrast, for cases of more indolent hearing loss, other etiologies such as neurofibromatosis type 2 or normal aging can be entertained. It is estimated that up to 8% of patients with cancers may develop leptomeningeal disease, and melanoma is one of the three most common malignancies that metastasizes to the meninges [8]. The inferior colliculus is known to be involved in speech processing as well. In our patient, compression of the quadrigeminal plate may therefore also be implicated in his poor hearing and word recognition. In cancer patients with bilateral profound hearing loss, such as the present case, cochlear implantation remains a viable auditory rehabilitation option even in patients requiring chemotherapy or radiation therapy [9].

As a final learning point from this case, neurology trainees and general neurologists may encounter patients with cancer who are navigating their care in the COVID-19 era. Active chemotherapy, radiation, and immunotherapy may represent risk factors for both infection and
worse outcomes [10] and is an area of active study. Current guidelines from the American Society of Clinical Oncology (ASCO) recommend that patients who are diagnosed with COVID-19 pneumonia be placed on a treatment break for either 14 days, or 72 hours after symptoms abate with two negative nasal swabs 24 hours apart [11]. In this patient, COVID-19 infection coincided with progression of disease. However, his neurological symptoms were successfully temporized with corticosteroids while awaiting resumption of treatment. At this time, the potential effects of COVID-19 and the resulting delay in cancer therapy for this patient are not yet known. Further investigation is needed to track outcomes in these patients.
Figures:

Figure 1. Nonenhanced axial T1 weighted MR image (A) shows hyperintense pineal region mass and numerous hyperintense foci in the subarachnoid space with enhancement after gadolinium administration (B). Sagittal view of contrast enhanced MRI (C). High signal intensity on T1-weighted images is attributed to the effects of free radicals in melanin and blood products.
APPENDIX 1. AUTHORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashley Elimar Aaroe MD</td>
<td>MD Anderson, Houston</td>
<td>Conceptualized manuscript</td>
</tr>
<tr>
<td>Isabella Claudia Glitza Oliva MD PhD</td>
<td>MD Anderson, Houston</td>
<td>Revised manuscript for intellectual content</td>
</tr>
<tr>
<td>Nagham Al-Zubidi MD</td>
<td>MD Anderson, Houston</td>
<td>Provided figure, Revised manuscript for intellectual content</td>
</tr>
<tr>
<td>Marc-Elie Nader MD</td>
<td>MD Anderson, Houston</td>
<td>Revised manuscript for intellectual content</td>
</tr>
<tr>
<td>Diana Kaya MD</td>
<td>MD Anderson, Houston</td>
<td>Provided figure, Revised manuscript for intellectual content</td>
</tr>
<tr>
<td>Sherise Desiree Ferguson MD</td>
<td>MD Anderson, Houston</td>
<td>Revised manuscript for intellectual content</td>
</tr>
<tr>
<td>Chenyang Wang MD</td>
<td>MD Anderson, Houston</td>
<td>Revised manuscript for intellectual content</td>
</tr>
<tr>
<td>Gregory Fuller MD PhD</td>
<td>MD Anderson, Houston</td>
<td>Provided figure, Revised manuscript for intellectual content</td>
</tr>
<tr>
<td>Rebecca Anne Harrison MD PhD</td>
<td>MD Anderson, Houston</td>
<td>Author, Revised manuscript for intellectual content</td>
</tr>
</tbody>
</table>
References:

Pearls & Oy-sters: Primary Pineal Melanoma With Leptomeningeal Carcinomatosis
Ashley E. Aaroe, Isabella C. Glitza Oliva, Nagham Al-Zubidi, et al.
Neurology published online April 30, 2021
DOI 10.1212/WNL.0000000000012121

This information is current as of April 30, 2021