Clinical Reasoning: A 42-Year-Old Woman With Mysterious Monocytic Meningitis

Author(s):
Meghan E. Nothem, DO¹; Ryan M. Lee, MD, PhD²; Jonathan M. Katz, BS³; Paul A. Bergl, MD⁴; Ahmed Z. Obeidat, MD, PhD²

Corresponding Author:
Meghan E. Nothem
mnothem@mcw.edu

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Affiliation Information for All Authors: 1. Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; 2. Department of Neurology, Medical College of Wisconsin, Milwaukee, WI; 3. Medical College of Wisconsin, Milwaukee, WI; 4. Department of Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI

Contributions:
Meghan E. Nothem: Drafting/revision of the manuscript for content, including medical writing for content
Ryan M. Lee: Drafting/revision of the manuscript for content, including medical writing for content
Jonathan M. Katz: Drafting/revision of the manuscript for content, including medical writing for content
Paul A. Bergl: Drafting/revision of the manuscript for content, including medical writing for content
Ahmed Z. Obeidat: Drafting/revision of the manuscript for content, including medical writing for content

Number of characters in title: 56
Abstract Word count:
Word count of main text: 1652
References: 8
Figures: 1
Tables: 0

Search Terms: [138] Meningitis

Study Funding: The authors report no targeted funding

Disclosures: The authors have no disclosures to report.

Section 1:
A 42-year-old woman with a history of migraine headaches and no other significant past medical history presented with daily headaches, cervicalgia, and nausea over a period of three weeks. These headaches were similar in severity to those which she had previously experienced. Presumptive migraine treatment was administered and she was released home. Three days later, her symptoms worsened and she developed double vision, unsteady gait, and right-sided hearing loss. She reported no fever or weight loss. Residing in the Upper Midwest, her leisure activities included hunting pheasant, deer, and duck, and she regularly cooked and ate wild game. She had traveled periodically to a southwestern state in the months prior to presentation. In the year
preceding the current illness, she had experienced multiple tick bites and reported that she had Lyme disease as a teenager. Physical examination showed a somnolent patient who required tactile stimulation to arouse and who was not oriented to time or situation. Her vital signs were unremarkable with afebrile temperature at 98.2 Fahrenheit. Pupils were reactive, but she displayed impaired left eye adduction, supraduction and to a lesser degree infraduction with impaired right eye abduction. She also had bilateral facial muscle weakness, impaired hearing bilaterally, hypophonic speech, dysphagia (later confirmed by a fluoroscopic swallow study), and impaired palate elevation. She had motor weakness in bilateral lower extremities, and to a lesser extent in upper extremities. Muscle weakness distribution involved flexors in lower extremities graded at 3/5, and extensors at 4/5 as opposed to upper extremities at 5/5 in flexors and 4/5 in extensor groups. Truncal ataxia was present. She had no rash, lymphadenopathy, or evidence of inflammatory arthritis, and the remainder of her examination was unremarkable. Initial labs were unremarkable other than elevated erythrocyte sediment rate (ESR) at 19 seconds but normal C-reactive protein (<0.29 mg/L). Multiple computed tomography (CT) scans of the head during the first three weeks of treatment showed no acute abnormalities including no evidence of hemorrhage, and cerebrospinal fluid (CSF) testing revealed elevated protein of 146.1 mg/dL (normal range 15 to 45 mg/dL), low glucose <10 mg/dL (serum glucose level was 106 mg/dL), and increased nucleated cells to 518/UL (normal 0 to 8/UL) with 86% monocytes, 10% lymphocytes and 4% neutrophils. Gram stain and microbial cultures were negative and no opening pressure was documented.

Question for consideration:

1. What is the possible localization based on the patient’s presenting symptoms?
2. What diagnoses are supported by CSF monocytosis and low CSF glucose (hypoglycorrhachia)?

Section 2:

The patient’s symptoms and signs likely suggest multiple cranial nerve or multi-level, brainstem involvement and cannot be localized to a single lesion. Left eye impaired adduction, supraduction and infraduction suggest left cranial nerve III palsy. The impaired abduction of the right eye suggests right cranial nerve VI palsy. Facial weakness suggests involvement of bilateral cranial nerve VII, impaired hearing suggests bilateral cranial nerve VIII palsy. Hypophonic speech and impaired soft palate elevation suggest involvement of cranial nerves IX and X. Corticobulbar tracts involvement is also possible at the level of midbrain or higher. The pattern of motor weakness (predominant extensor weakness in upper extremities and flexor weakness in lower extremities) suggests corticospinal tracts involvement. Based on the extent of cranial nerves involved, a large brainstem lesion would be unlikely with preserved consciousness, i.e., sparing the majority of the reticular activating system or network.

The combination of CSF monocytosis and low CSF glucose (hypoglycorrhachia) suggested infection, autoimmune/inflammatory/granulomatous disease, or a neoplastic disorder of the central nervous system. Hypoglycorrhachia is seen in CNS infections, including bacterial, fungal and occasionally viral.\(^1\) In a single-center retrospective cohort study, hypoglycorrhachia was most commonly due to bacterial infections, particularly among patients with previous neurosurgical procedures, and fungal meningitis, especially among immunocompromised hosts.\(^1\) However, in immunocompetent patients, noninfectious etiologies were more common and included neurosarcoidosis, leukemia, CNS lymphoma and leptomeningeal carcinomatosis.\(^1\)
The differential diagnosis for CSF monocytosis is not well defined. Monocytes are critical to innate immunity, and peripheral monocytosis is a nonspecific marker generally reflecting the presence of chronic or indolent infections, autoimmune disorders, hematologic malignancies, or solid tumors. Their abundance in the CSF would suggest a similarly wide range of etiologies.

Question for consideration:

1. What further testing or work-up would you perform in this patient?
2. Do your differential diagnoses favor infectious or non-infectious etiologies?

Section 3:

Brain magnetic resonance imaging (MRI) demonstrated abnormal contrast enhancement of cranial nerves III, V, VII, VIII, X, and XI bilaterally and bony thickening of the occipital skull and adjacent dura across the right tentorium and into the posterior fossa (Figure 1 A,B,C); the latter was considered suggestive of a meningioma. Meningeal contrast enhancement of the entire spine was also observed (Figure 1 D-F). As her symptoms seemingly improved on antimicrobial therapy including vancomycin, ceftriaxone and acyclovir, she was discharged home on ceftriaxone for possible neuroborreliosis due to history of multiple tick bites. Three days following discharge, her symptoms worsened. A repeat lumbar puncture (LP) demonstrated an opening pressure of 23 cm of water, elevated protein of 230.9 mg/dL, glucose < 10 mg/dL, 703/UL nucleated cells with 88% monocytes, 7% lymphocytes and 5% neutrophils. CSF VDRL, serum beta-D-glucan, and serologic studies for syphilis were negative.

The patient’s presentation progressed to include non-reactive left pupil, mydriasis with ptosis, leftward gaze palsy, and dysarthria. Her mental status declined, and she underwent a third LP
notable for an opening pressure of 44 cm of water with persistent CSF monocytois and hypoglycorrhachia. CSF flow cytometry was without evidence of malignant cells or lymphoma. An external ventricular drain was placed to alleviate increased intracranial pressure (ICP) which was later converted to a ventriculoperitoneal shunt.

Due to the hypoglycorrhachia and CSF monocytois, extensive immunologic and infectious studies were performed during her hospitalizations. These studies were unrevealing and included a negative CT of the chest, abdomen, and pelvis for sarcoidosis, blood cultures, HIV testing, CSF angiotensin converting enzyme (ACE) levels, serologic infectious studies (coccidiomyocosis, toxoplasmosis, brucellosis, Lyme disease, syphilis, tuberculosis), autoimmune serologic testing (antineuclear antibodies (ANA), anti-cyclic citrullinated peptide (CCP) antibodies, antineutrophil cytoplasmic antibodies (ANCA), rheumatoid factor), urine antigen testing for *Histoplasma* and *Blastomyces*, CSF bacterial and fungal cultures, CSF nucleic acid amplification test (NAAT) (Cryptococcus species, herpesviridae, *Histoplasma, Blastomyces*, and tuberculosis), CSF antibodies (*Toxoplasma, B. burgdorferi*, human lymphocytic choriomeningitis virus), and CSF IgG4 levels. Repeat brain MRI four days after the first MRI showed worsening of abnormal FLAIR signal, T1 post contrast enhancement, including leptomeningeal structures, and development of ependymal thickening (Figure 1 G-I). Though empiric high-dose glucocorticoids were considered, treatment was postponed until biopsies of the posterior fossa mass and cranial nerve V were performed. Pathological examination revealed that the posterior fossa mass was WHO grade I meningioma, and cranial nerve V showed atypical histiocytic reaction, possibly Erdheim-Chester disease, a rare multisystem disorder in the form of histiocytes that often involves the central nervous system.
Given the concern for a disseminated histiocytosis, she underwent nuclear medicine bone scanning which showed no boney lesions and positron emission testing (PET) which had no boney uptake but predictably demonstrated diffuse leptomeningeal hypermetabolic activity in the thoracic and lumbar spine (Figure 1 K, L).

Question for consideration:

1. How would you manage the patient at this time?

Section 4:

Although her cranial nerve biopsies and other noninvasive testing could not establish a definitive diagnosis, dexamethasone was initiated for presumed Erdheim-Chester disease or a related histiocytic disorder. Initially, her mentation, hearing, and diplopia improved. She experienced peritonitis and sepsis secondary to gastric perforation in association with her ventriculoperitoneal shunt, requiring surgical removal and exchange with ventriculopleural shunt.

Despite steroids, she experienced progressive neurologic decline with worsening ptosis, ophthalmoplegia, and loss of facial tone. Repeat cranial nerve biopsy was considered too risky and presumably low yield after prolonged exposure to steroids. She was treated empirically for an uncharacterized malignant histiocytic disorder with cladribine 7 mg IV daily for three days. Despite treatment, she developed acute hydrocephalus and severe neurologic impairment on day three of chemotherapy, which was likely secondary to communicating hydrocephalus with inadequate CSF absorption. An external ventricular drain was emergently placed for brain herniation without subsequent neurologic improvement. Her family ultimately opted to transition to comfort measures.
Final autopsy showed central nervous system histiocytic sarcoma with diffuse leptomeningeal involvement of inferior frontal lobe, temporal lobes, cerebellum, brain stem, spinal cord, spinal roots, and ventricular system with hydrocephalus, residual meningioma in the posterior occipital dura, and pleuritis with fibrinous adhesions on posterolateral and inferolateral pleural surfaces.

Question for consideration:

1. What are histiocytoses?
2. How well does this case align with classic Erdheim-Chester disease?

Section 5:

Histiocytoses are rare disorders that span a variety of clinical diseases which are histologically similar. In general, histiocytoses are characterized by accumulation of monocyte-derived cells, such as macrophages and dendritic cells, in end organs. Erdheim-Chester disease (ECD) is a rare form of non-Langerhans-cell histiocytosis which may affect multiple organ systems but almost uniformly causes osteosclerotic boney lesions. Other systemic findings include peri-aortic encasement, cardiac masses and pseudotumors, diabetes insipidus (DI), retro-orbital inflammation and exophthalmos, CNS infiltration, and retroperitoneal fibrosis. Ultimately, the diagnosis hinges on characteristic immunostaining patterns of macrophages and subsequent molecular testing with BRAF V600E and/or RAS mutations often detected in biopsies.

Histiocytoses that affect the CNS, such as ECD, are typically indolent with slow progression of symptoms. In this case, the rapid clinical decline despite empiric steroids and an exhaustive evaluation for infection suggested a more sinister and aggressive form of CNS disease. As a subtype of a primary central nervous system lymphoma, primary CNS histiocytic sarcoma...
(PCNSHS) has been documented only a few dozen times.6,7 PCNSHS can present with one or more lesions in the cerebrum, cerebellum, meninges, and spinal cord. Clinical symptoms can range from headache to frank neurologic deficits.6,8 Prognosis is generally poor with reported average survival of 19-29 months.6 Treatment courses are non-standardized and have included combinations of surgical resection, radiation, and chemotherapies, as well as interferons without any successful treatments developed to date.6,8

\textbf{Appendix 1: Authors}

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meghan E. Nothem, DO</td>
<td>Medical College of Wisconsin, Milwaukee, WI</td>
<td>Concept, drafted and revised the manuscript, analyzed and interpreted data</td>
</tr>
<tr>
<td>Ryan M. Lee, MD, PhD</td>
<td>Medical College</td>
<td>Prepared the figure, analyzed</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Affiliation</td>
<td>Contributions</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Jonathan M. Katz, BS</td>
<td>Medical College of Wisconsin, Milwaukee, WI</td>
<td>Drafted and revised the manuscript, analyzed and interpreted data</td>
</tr>
<tr>
<td>Paul A. Bergl, MD</td>
<td>Medical College of Wisconsin, Milwaukee, WI</td>
<td>Drafted and revised the manuscript, analyzed and interpreted data and approved all final changes</td>
</tr>
<tr>
<td>Ahmed Z. Obeidat, MD, PhD</td>
<td>Medical College of Wisconsin, Milwaukee, WI</td>
<td>Performed critical revision of the manuscript, analyzed and interpreted data, prepared the figure, revised the manuscript and approved all final changes</td>
</tr>
</tbody>
</table>

References:

Figure Legends:

Figure 1. Diffuse leptomeningeal enhancement of multiple intracranial areas and spinal cord along with worsening of intracranial disease and spinal cord hypermetabolism.

(A) Axial T1 showing no intracranial abnormalities, however, demonstrated bony thickening of the right occipital skull (highlighted as yellow arrow heads); (B) axial T1 post-contrast showing
diffuse leptomeningeal and focal parenchymal enhancement; (C) T1-post contrast showing bilateral anterior midbrain enhancement (arrow head); (D-F) T1-post contrast diffuse meningeal enhancement in (D) Cervical, (E) thoracic and (F) lumbosacral spine. (G-I) Axial T2 FLAIR showing multiple areas of increased signal including thickening of the ependyma surfaces and gyral surfaces (arrow head); (J) axial T1 post-contrast of showing enhancement of the lining of the fourth ventricle (arrow head). (K,L) PET scan showing increased uptake in the lower thoracic spine (K) axial and (L) sagittal. Kidney uptake provided as a reference (asterisk).
Clinical Reasoning: A 42-Year-Old Woman With Mysterious Monocytic Meningitis
Neurology published online May 4, 2021
DOI 10.1212/WNL.0000000000012155

This information is current as of May 4, 2021

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>updated information including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://n.neurology.org/content/early/2021/05/04/WNL.0000000000012155.citation.full</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>Meningitis http://n.neurology.org/cgi/collection/meningitis</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>