Teaching NeuroImages: Nonalcoholic Wernicke Encephalopathy

Grant Hansen, BS1*, Eunjee Kim, BA MBA1*, Smathorn Thakolwiboon, MD2, Jongyeol Kim, MD2

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
1 School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, Texas, United States

2 Department of Neurology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 8321, Lubbock, Texas, United States

* These authors contributed equally to the manuscript.

To whom correspondence should be addressed: Jongyeol Kim, MD, E-mail: jongyeol.kim@ttuhsc.edu

Word count: 111
Character count
for title: 36
Number of references: 1
Number of figures:
1 Number of videos: 0
Supplementary data: None

Keywords: Nutritional, MRI, Wernicke encephalopathy, Thiamine deficiency

Disclosure

Grant Hansen, BS reports no disclosure.

Eunjee Kim, BA MBA reports no disclosure.

Smathorn Thakolwiboon, MD reports no disclosure.

Jongyeol Kim, MD reports no disclosure.

Study funding: No targeted funding reported.
A nonalcoholic 40-year-old female with chronic gastritis who had lost 50 pounds in the past 45 days presented with dyscoordination and diplopia. Examination showed confabulation, ophthalmoplegia, nystagmus, and appendicular ataxia. Brain MRI (Figure) showed DWI and FLAIR abnormalities suggestive of Wernicke encephalopathy (WE). With classic triad of WE and MRI findings, intravenous thiamine 500 mg TID was administered for 3 days, followed by maintenance oral thiamine. The patient showed significant improvement. Thiamine replacement therapy should be considered in patients with malnutrition or malabsorption as it is important in maintaining cellular osmotic gradients. Thiamine deficiency may lead to cytotoxic edema, especially in high metabolic demand regions such as thalami and mammillary bodies.¹
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Hansen, BS</td>
<td>Texas Tech University Health Sciences Center, Lubbock, TX</td>
<td>Drafting and revising of the manuscript, participated in data acquisition and interpretation</td>
</tr>
<tr>
<td>Eunjee Kim, BA MBA</td>
<td>Texas Tech University Health Sciences Center, Lubbock, TX</td>
<td>Drafting and revising of the manuscript, participated in data acquisition and interpretation</td>
</tr>
<tr>
<td>Smathorn Thakolwiboon, MD</td>
<td>Texas Tech University Health Sciences Center, Lubbock, TX</td>
<td>Critically reviewing the manuscript, contributed to the drafting and revising of the manuscript, conceptualization of the work</td>
</tr>
<tr>
<td>Jongyeol Kim, MD</td>
<td>Texas Tech University Health Sciences Center, Lubbock, TX</td>
<td>Contributed to the drafting and revising of the manuscript, conceptualization of the work, and supervision</td>
</tr>
</tbody>
</table>
Teaching Slides -- http://links.lww.com/WNL/B421

Reference

Figure. MRI finding of the brain.

DWI shows symmetrical hyperintensities in the mammillary bodies (A) and the dorsomedial thalami (B). FLAIR shows hyperintensities in the periaqueductal area (C solid arrow, F box), the mammillary bodies (D, F solid arrows), the medial thalami (E solid arrows), and superior and inferior colliculi (C, F outlined arrows).
Teaching NeuroImages: Nonalcoholic Wernicke Encephalopathy
Grant Hansen, Eunjee Kim, Smathorn Thakolwiboon, et al.
Neurology published online May 13, 2021
DOI 10.1212/WNL.000000000012196

This information is current as of May 13, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/05/13/WNL.000000000012196.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
MRI
http://n.neurology.org/cgi/collection/mri
Nutritional
http://n.neurology.org/cgi/collection/nutritional

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise