Teaching NeuroImages: Ganglion Cell Patterns Localize Anterior Visual Pathway Lesions

Author(s):
Gregg D Miller, BA1; Laurel N Vuong, MD2; Thomas R Hedges III, MD2

Corresponding Author:
Thomas R Hedges III
thedges@tuftsmedicalcenter.org

Affiliation Information for All Authors: 1. Tufts University School of Medicine, Boston, Massachusetts, USA; 2. New England Eye Center at Tufts Medical Center, Boston, Massachusetts, USA

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Measurement of retinal ganglion cell layer thickness by optical coherence tomography (OCT) provides an objective and reliable evaluation of anterior visual pathway lesions to complement visual field testing in the management of optic chiasm compression from pituitary tumors.1,2 We demonstrate three differing patterns of ganglion cell layer thinning—junctional (Fig. 1A and D), binasal (Fig. 1B and E), and homonymous (Fig 1C and F)—and illustrate how these patterns correspond to the location of chiasmal compression by pituitary adenomas, either anteriorly (Fig. 2A), centrally (Fig.2B), or posteriorly (Fig. 2C). Consideration of the pattern of ganglion cell layer thinning in conjunction with visual field testing is useful for predicting the location of anterior visual pathway lesions.
Appendix 1: Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregg D. Miller, BA</td>
<td>Tufts University School of Medicine, Boston</td>
<td>Prepared the manuscript, figures, and PowerPoint</td>
</tr>
<tr>
<td>Laurel N. Vuong, MD</td>
<td>New England Eye Center, Boston</td>
<td>Conceptualized and revised the manuscript; treating physician</td>
</tr>
<tr>
<td>Thomas R. Hedges III, MD</td>
<td>New England Eye Center, Boston</td>
<td>Conceptualized and revised the manuscript; treating physician</td>
</tr>
</tbody>
</table>

Teaching Slides --- http://links.lww.com/WNL/B424

References

Figure 1: Visual Fields, MRI, and OCT for Three Cases of Optic Chiasm Compression. Anterior chiasmal compression by pituitary adenoma (red arrows) on T2-weighted axial MRI (D) corresponds to diffuse visual field loss (dark areas) of the ipsilateral eye with junctional scotoma of the contralateral eye superotemporally (A) and diffuse ganglion cell thinning (blue areas) in the ipsilateral eye and inferonasal thinning in the contralateral eye on OCT (D). Central compression corresponds to bitemporal hemianopia (B) and binasal ganglion cell thinning (E). Posterior compression corresponds to (an incongruous) contralateral homonymous hemianopia (C) and temporal ganglion cell thinning in the ipsilateral eye and nasal thinning in the contralateral eye (F).
Figure 2: Schematic of Three Cases of Optic Chiasm Compression. Optic chiasm (gray) compression anteriorly by pituitary adenoma (pink) affecting the right optic nerve and inferomedial left optic nerve (black arrows) (A). Central optic chiasm compression by pituitary adenoma affecting the central chiasm (B). Posterior optic chiasm compression by pituitary adenoma affecting the left optic tract (C).
Teaching NeuroImages: Ganglion Cell Patterns Localize Anterior Visual Pathway Lesions
Gregg D Miller, Laurel N Vuong and Thomas R Hedges III
Neurology published online May 13, 2021
DOI 10.1212/WNL.0000000000012200

This information is current as of May 13, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/05/13/WNL.0000000000012200.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
MRI
http://n.neurology.org/cgi/collection/mri
Optic nerve
http://n.neurology.org/cgi/collection/optic_nerve
Visual fields
http://n.neurology.org/cgi/collection/visual_fields
Visual loss
http://n.neurology.org/cgi/collection/visual_loss

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise