Seizure Control in Neonates Undergoing Screening vs Confirmatory EEG Monitoring

Author(s):
Courtney J. Wusthoff, MD, MS1; Vandana Sundaram, MPH2; Nicholas S. Abend, MD MSCE3, 4; Shavonne L. Massey, MD MSCE4, 5; Monica E. Lemmon, MD6; Cameron Thomas, MD, MS7; Charles E. McCulloch, PhD8; Taeun Chang, MD9; Janet S. Soul, MDCM10; Catherine J. Chu, MD, MA, MMSc11; Elizabeth E. Rogers, MD12; Sonia Loneli Bonifacio, MD13; Maria Roberta Cilio, MD, PhD14; Hannah C. Glass, MDCM15; Renée A. Shellhaas, MD, MS16 on behalf of the Neonatal Seizure Registry Group

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Equal Author Contributions:
co-senior authors: Drs. Glass and Shellhaas contributed equally to this work.

Corresponding Author:
Courtney J. Wusthoff
wusthoff@stanford.edu

Affiliation Information for All Authors: 1. Divisions of Child Neurology and Pediatrics (Neonatology), Stanford University, Palo Alto, CA; 2. Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA; 3. Departments of Neurology, Pediatrics, and Anesthesia & Critical Care Medicine, University of Pennsylvania Perelman School of Medicine; 4. Department of Pediatrics (Division of Neurology), Children’s Hospital of Philadelphia, Philadelphia, PA; 5. Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine; 6. Departments of Pediatrics and Population Health Sciences, Duke University School of Medicine, Durham, NC; 7. Department of Pediatrics, University of Cincinnati, College of Medicine, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; 8. Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA; 9. Neurology, George Washington University School of Medicine, Children’s National Hospital, Washington, DC; 10. Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; 11. Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; 12. Department of Pediatrics, University of California San Francisco, San Francisco, CA; 13. Division of Neonatal & Developmental Medicine, Department of Pediatrics, Stanford University, Palo Alto, CA; 14. Division of Pediatric Neurology, Department of Pediatrics, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium; 15. Department of Neurology and Weill Institute for Neuroscience, Department of Pediatrics, UCSF Benioff Children’s Hospital, Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA; 16. Division of Pediatric Neurology, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor

Contributions:
Courtney J. Wusthoff: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Vandana Sundaram: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Nicholas S. Abend: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Shavonne L. Massey: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Monica E. Lemmon: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Cameron Thomas: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Charles E. McCulloch: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Taeun Chang: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Janet S. Soul: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Catherine J. Chu: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Elizabeth E. Rogers: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Sonia Lomeli Bonifacio: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Maria Roberta Cilio: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data
Hannah C. Glass: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Renée A. Shellhaas: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Abstract Word count: 250
Word count of main text: 3281
References: 19
Figures: 3
Tables: 2

Clinical Trial registration number: NCT02789176

Supplemental: STROBE checklist, STARD checklist

Statistical Analysis performed by: Vandana Sundaram, MPH Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine

Acknowledgements: We acknowledge the NSR parent partner group for their input toward this project, as well as the study coordinators at the NSR centers.

Study Funding: NIH grant K02NS102598 (CW)PCORI CER-1507-31187 Pediatric Epilepsy Research FoundationStanford Maternal Child Health Research Institute NIH K23 NS116453 (ML)NIH K23 NS092923 (CC)

Disclosures: C. J. Wusthoff was funded by NIH grant K02NS102598, PCORI, the Pediatric Epilepsy Research Foundation, Stanford Maternal Child Health Research Institute and has served as a consultant for Persyst; V. Sundaram reports no disclosures; N.S. Abend receives research funding from NIH, PCORI, UCB Pharma, Wolfson Family Foundation, and Children’s Hospital of Philadelphia, royalties from Demos, and is a consultant for the Epilepsy Foundation; S. Massey reports no disclosures; M.E. Lemmon is funded by NIH grant K23NS116453; C.W. Thomas received research funding from NIH, UCB Pharma and Cincinnati Children’s Hospital; C. E. McCulloch receives research funding from NIH and PCORI; T. Chang reports no disclosures; J.S. Soul received research funding from NIH, PCORI, and received royalties from UpToDate; C.J. Chu receives research funding from the NIH and serves as a consultant for Biogen Inc and Sleepmed Inc; E.E Rogers receives research funding from NIH, PCORI, and UCSF; S. Bonifacio reports no disclosures; M.R. Cilio receives research funding from Fond de Recherche Clinique, Saint-Luc University Hospital; H. C. Glass received research funding from NIH and PCORI; R.A. Shellhaas receives...
Abstract

Objective: To determine whether screening continuous EEG monitoring (cEEG) is associated with greater odds of treatment success for neonatal seizures.

Methods: We included term neonates with acute symptomatic seizures enrolled in the Neonatal Seizure Registry (NSR), a prospective, multicenter cohort of neonates with seizures. We compared two cEEG approaches: (1) Screening cEEG, initiated for indications of encephalopathy or paralysis without suspected clinical seizures, and (2) Confirmatory cEEG, initiated for the indication of clinical events suspicious for seizures, either alone or in addition to other indications. The primary outcome was successful response to initial seizure treatment, defined as seizures resolved without recurrence within 30 minutes after initial loading dose of anti-seizure medicine. Multivariable logistic regression analyses assessed the association between cEEG approach and successful seizure treatment.

Results: Among 514 neonates included, 161 (31%) had screening cEEG and 353 (69%) had confirmatory cEEG. Neonates with screening cEEG had a higher proportion of successful initial seizure treatment than neonates with confirmatory cEEG (39% versus 18%; p<0.0001). After adjusting for covariates, there remained a greater odds ratio (OR) for successful initial seizure treatment in the screening vs. confirmatory cEEG groups (adjusted OR 2.44, 95% CI: 1.45-4.11, p=0.0008).

Conclusions: These findings provide evidence from a large, contemporary cohort of neonates that a screening cEEG approach may improve odds of successful treatment of acute seizures.
Classification of Evidence: This study provides Class III evidence that for neonates a screening CEEG approach, compared to a confirmatory EEG approach, increases the probability of successful treatment of acute seizures.
INTRODUCTION

Seizures in neonates are difficult to diagnose and often refractory to treatment. Up to two-thirds of neonates with acute symptomatic seizures have incomplete response to the initial loading dose of anti-seizure medication (ASM).1 Strategies to improve treatment of neonates with seizures include the use of continuous EEG monitoring (cEEG) to accurately diagnose seizures and assess response to treatment.2 It is unknown whether preemptive use of cEEG to screen for seizures in high-risk neonates improves odds of treatment success, as compared to initiating cEEG to confirm the diagnosis of seizures only after clinically-suspected seizures occur.

We hypothesized that utilization of a screening cEEG rather than a confirmatory cEEG approach would improve the likelihood of prompt and successful response to initial ASM treatment for neonates with acute symptomatic seizures.

METHODS

The primary research question of this study was to provide Class III evidence for whether in neonates a screening cEEG approach rather than a confirmatory cEEG approach is associated with increased probability of successful treatment of acute seizures.

Study Design

We performed secondary analyses of data from the Neonatal Seizure Registry (NSR), a prospective registry of neonates with acute symptomatic seizures managed at nine centers that adhere to the cEEG guidelines of the American Clinical Neurophysiology Society2 from July 2013 through March 2018. The methods of the NSR have been reported previously.1

For these analyses, data from two prospective cohorts were merged. NSR-I was a consecutive cohort of all neonates with seizures diagnosed clinically and/or with cEEG confirmation,
enrolled under a waiver of consent January 2013 to November 2015. NSR II was a non-consecutive cohort of neonates who survived acute symptomatic seizures diagnosed clinically and/or with cEEG confirmation, enrolled with parental informed consent from July 2016 to March 2018. While all neonates with suspected seizures underwent cEEG as per American Clinical Neurophysiology Society guidelines, including continuing cEEG until no seizures had occurred for at least 24 hours, and continuing cEEG for the duration of therapeutic hypothermia for infants treated for HIE, the initiation and discontinuation times for cEEG were determined by treating clinicians. Similarly, seizure treatment regimens were at the discretion of the treating clinicians. Neonates from these NSR cohorts have been previously reported.1,3-5

For these analyses, we included term neonates (born at ≥ 37 weeks gestational age) with seizure onset prior to 44 weeks postmenstrual age and acute symptomatic neonatal seizures due to an identified etiology, as determined by site investigator review of clinical documentation (Figure 1). Acute symptomatic causes of neonatal seizures included hypoxic-ischemic encephalopathy, ischemic stroke, intracranial hemorrhage, infection and other acute brain injury as specified by the site investigator. Neonates were excluded if they had a transient cause of seizures (e.g., electrolyte abnormalities), genetic or structural causes of neonatal epilepsy (rather than acute symptomatic seizures), or were missing data on either the cEEG approach used or the primary outcome. As the primary outcome for this analysis was seizure resolution as defined by EEG, we excluded NSR participants who never had seizures on cEEG at the study center (i.e., those with clinically diagnosed seizures that resolved prior to EEG, or those with seizures only reported on outside hospital EEG and not at the NSR study site cEEG). These neonates were included in a sensitivity analysis, as described below and in Figure 2.

Definitions of Outcomes and Independent Variables
Our primary objective was to assess the association of cEEG approach with successful response to initial seizure treatment without seizure recurrence as confirmed on cEEG. Neonates were categorized as undergoing cEEG according to one of two monitoring approaches. A **screening cEEG approach** included neonates with cEEG ordered for sole indications of “encephalopathy” or “paralysis.” A **confirmatory cEEG approach** included neonates with cEEG ordered for indications of “clinical events suspicious for seizures” or “clinical events and encephalopathy”, either alone or in addition to other indications. The indication for cEEG was defined as the indication documented in the medical record. The primary outcome was successful response to initial treatment, defined as resolution of seizures on EEG no later than 30 minutes after administration of initial minimum loading dose of ASM (phenobarbital 20 mg/kg, phenytoin or fosphenytoin 15 mg/kg, or levetiracetam 40 mg/kg). Successful response to treatment required no relapse, either on EEG or by clinically diagnosed seizures, for the remainder of the NICU admission. The primary seizure etiology was categorized by the site investigator as hypoxic-ischemic encephalopathy, ischemic stroke, intracranial hemorrhage, or other etiology. Multiple seizure etiologies were possible for a single patient.

Statistical Analyses

Descriptive statistics characterized the cohort and compared cEEG groups by age, sex, race, ethnicity, birth weight, Apgar scores, and seizure etiology. The cEEG groups were described and compared for high seizure burden (defined as “frequent recurrent EEG seizures” or status epilepticus) and status epilepticus at any time during NICU admission; the registry data did not include details as to the timing of high seizure burden or status epilepticus. Categorical variables were summarized using frequencies and percentages. Continuous variables were summarized using either mean with standard deviation or median with interquartile range. Characteristics of the two cEEG groups were compared using absolute standardized difference (ASD), which was
calculated as the difference in means or proportions divided by the standard error or multivariate Mahalanobis distance method. An imbalance between study groups was defined as ASD values greater than 0.2.6

The primary outcome of successful seizure treatment response was analyzed using bivariate and multivariable logistic regression analyses. Seizure severity has been associated with response to treatment; while NSR data did not include detail regarding pre-treatment seizure severity, we did adjust for potential confounders previously identified as associated with seizure severity.1 The following variables were included in the multivariable analysis as potential confounders related to seizure severity: Apgar score at 5 minutes, primary seizure etiology category, presence/absence of multiple seizure etiologies, and whether the patient underwent therapeutic hypothermia.

Because hypoxic-ischemic encephalopathy is a common clinical indication for cEEG, and thus of particular clinical interest, an exploratory analysis of the primary outcome was conducted restricting the analytic cohort to newborns that had a primary seizure etiology of hypoxic-ischemic encephalopathy. In this analysis the multivariable logistic regression model included Apgar score at 5 minutes and whether the patient underwent therapeutic hypothermia as potential confounders related to seizure severity.

Sensitivity analyses were performed to consider the potential impact of excluding neonates who never had seizures on study center cEEG (i.e., those with clinical events that resolved prior to EEG or those with clinical seizures and seizures reported on non-study site EEG but never on study EEG), and thus could not be assessed for the primary outcome of seizure resolution on cEEG. The documented indication for cEEG was used to classify these neonates into their cEEG approach group. Simulation studies were conducted to generate missing outcome data by varying the assumption of treatment success (had EEG been available at the time of initial treatment).
Treatment success rates simulated were 10%, 20%, 25% (the overall rate of treatment success in the primary analysis), 40% (the rate of treatment success observed in the screening cEEG group), 60%, 80%, and 100%. We also conducted simulations to determine the presumed treatment success rate at which there would be no difference in between the two cEEG approach groups. Multivariable logistic regression was conducted using the same approach as used for the primary analysis to calculate the mean odds ratio and 95% confidence interval for 1000 replications of each simulation study.

Unless otherwise specified, all statistical tests were interpreted at a 2-sided significance level of 0.05.

Power Analysis

We expected to include 534 infants in our analysis: 107 in the screening cEEG group and 427 in the confirmatory cEEG group. Based on prior work from the NSR, the overall rate of success with initial seizure treatment was estimated at 33%. Using these sample sizes, we estimated over 80% power to detect a difference of 15% in the successful seizure treatment response rate between the cEEG approach groups at a two-sided alpha level of 0.05.

Standard Protocol Approvals, Registrations, and Patient Consents

The study was approved by institutional review boards at each center. Data from neonates in NSR were collected under an approved waiver of consent. Data from neonates in NSR-II were collected after written informed consent was obtained from guardians of all participants in this research. The NSR-II study was prospectively registered at ClinicalTrials.gov (NCT02789176).

Data Availability
Anonymized data from this study will be shared upon request of qualified investigators upon institutional review board approval after the end of the overall study.

Classification of Evidence

The study is rated Class III because of confounding by indication: screening cEEG was initiated for encephalopathy or paralysis without suspected clinical seizures, and confirmatory cEEG was initiated for clinical events suspicious for seizures.

RESULTS

Characteristics of Patients in the cEEG Groups

Among 782 neonates in the dataset, 514 neonates were included in the primary analysis (Figure 1). Among these neonates, 161 (31%) had screening cEEG and 353 (69%) had confirmatory cEEG. Among the 161 neonates with cEEG ordered for a screening indication, 10 developed clinically apparent seizures after cEEG was ordered but prior to initiation of cEEG. Similarly, of the 353 neonates with confirmatory cEEG ordered to evaluate events deemed suspicious enough to warrant cEEG for differential diagnosis, only 312 had clinical events of high enough suspicion that they were clinically diagnosed as seizures. Table 1 summarizes clinical and demographic characteristics. Neonates in the two cEEG groups differed in their primary seizure etiology (ASD 0.87); 75% in the screening cEEG group had hypoxic-ischemic encephalopathy as their etiology versus 34% in the confirmatory cEEG group. Similarly, therapeutic hypothermia treatment differed (66% screening cEEG versus 15% confirmatory cEEG; ASD 1.2). Fifty-nine (12%) patients died during their neonatal admission, including 25 (16%) in the screening cEEG group and 34 (10%) in the confirmatory cEEG group.
Association of cEEG Approach with Treatment Success

Neonates in the screening cEEG group had a higher proportion of successful response to seizure treatment as compared to neonates in the confirmatory cEEG group (39% versus 18%; p<0.0001) (Table 2). Odds of successful response to seizure treatment remained greater in the screening cEEG group as compared to the confirmatory cEEG group after adjusting for covariates (adjusted OR 2.44; 95% CI: 1.45-4.11; p=0.0008). Similarly, among the subgroup of 241 neonates with hypoxic-ischemic encephalopathy, the screening cEEG group had greater odds of successful response to seizure treatment as compared to the confirmatory cEEG group after adjusting for covariates (adjusted OR 2.15; 95% CI: 1.14-4.04; p=0.02).

Sensitivity Analysis: including neonates who never had seizures on study EEG

The primary analysis excluded 112 neonates with resolution of clinical events prior to study cEEG initiation, as this rendered us unable to measure the primary outcome of seizure resolution on EEG within 30 minutes of initial ASM loading dose (Figure 1). Of these neonates, 3 (3%) were in the screening cEEG group and 109 (97%) were in the confirmatory cEEG group (Figure 2). For the three neonates with clinical events resolved prior to cEEG initiation but assigned to the screening group, cEEG was ordered for the indication of screening, then clinical events began and resolved in the interval between the decision to order EEG and cEEG initiation.

Figure 3 shows the results of the analyses of simulated data under various assumptions of initial treatment response for the group with clinical events resolved prior to cEEG initiation. When the estimated treatment success rate for those with missing outcome data was 25% or 40%, the odds of seizure treatment success remained greater in the screening cEEG group as compared to the confirmatory cEEG group. Specifically, if the overall treatment success rate was assumed to be equal to that of the overall cohort from the primary analysis (25%), then neonates in the
screening cEEG group continued to have greater odds of successful seizure treatment response after adjusting for covariates (adjusted OR 2.24; 95% CI: 1.40-3.58). Only with assumed rates of successful response to initial treatment greater than 52% for those with missing data was there no difference between the two cEEG approach groups in their successful response to initial treatment (Figure 3). EEG-based studies have shown neonatal seizure treatment success rates of 30-50% \cite{1,7-9}; all simulations based on assumptions in this range supported greater odds of successful seizure treatment response in the screening cEEG group.

DISCUSSION

Seizures are common among neonates with certain high-risk conditions, and they often lack distinct clinical signs.\cite{2,10,11} Accurate diagnosis of neonatal seizures relies on EEG confirmation. Screening cEEG allows detection of electrographic-only seizures and definitive diagnosis of clinically suspected seizures. Further, in neonates, ASM administration can result in suppression of outward clinical signs while electrographic seizures persist (known as electroclinical “uncoupling”); cEEG is necessary to accurately assess response to ASM treatment. For this reason, some centers have developed pathways to employ cEEG for seizure detection among all neonates in high-risk groups, such as those with hypoxic-ischemic encephalopathy or other conditions.\cite{12} Similarly, the American Clinical Neurophysiology Society has published guidelines for clinical conditions in which cEEG is indicated due to a high risk of seizures.\cite{2} The American Academy of Pediatrics has suggested that centers providing therapeutic hypothermia to neonates with hypoxic-ischemic encephalopathy should also have the ability to provide cEEG or amplitude integrated EEG monitoring for seizure detection.\cite{13} A recent survey of NICU practices in California found the majority of centers performed some degree of EEG monitoring among all neonates undergoing therapeutic hypothermia for hypoxic-ischemic encephalopathy.\cite{14} The goal of using cEEG as a tool to screen for seizures among high-risk neonates is to facilitate earlier and
more accurate diagnosis, and thereby more effective treatment, while at the same time avoiding ASM administration for seizure mimics.

At the same time, cEEG is resource intensive, and may not be available for all high-risk neonates at all hospitals. Among neonates with hypoxic ischemic encephalopathy treated with hypothermia, fewer than half have seizures on EEG.15 Among groups of newborns with other risk factors, the incidence is even lower.16 For this reason, some centers have employed a strategy of initiating cEEG only when there is a clinical suspicion for seizure, such as an abnormal paroxysmal movement suspected to be seizure. This confirmatory cEEG strategy allows lower use of resources than screening all neonates at risk. It is unknown to what degree this approach misses high-risk neonates with seizures that do not have clinical manifestations or delays seizure diagnosis and treatment.

There is a paucity of evidence regarding the impact of cEEG strategy on short and long-term outcomes. A randomized trial of screening versus confirmatory cEEG in neonates at risk for seizures is unlikely to occur, due both to a lack of equipoise at individual centers and the high expense of such a trial. In the absence of a randomized trial, other types of evidence must be sought to understand the impact of cEEG approaches on outcomes.

This study analyzed prospective, observational data from multiple centers to determine the association between cEEG monitoring approach and successful seizure treatment with the first loading dose of ASM. After adjusting for covariates, our results showed that neonates who underwent screening cEEG had more than two times greater odds of seizure treatment success as compared to those who underwent confirmatory cEEG. An analysis of only neonates with hypoxic-ischemic encephalopathy yielded a similar conclusion: screening cEEG remained associated with more than two times greater odds of treatment success than confirmatory cEEG. These data suggest further study is warranted as to how utilization of a screening cEEG approach
may facilitate improved successful seizure treatment response in neonates at high risk for seizures, and whether this ultimately impacts long-term outcomes.

Strengths of this study include the large number of neonates included and prospective data collection. Since this is an observational study, it is important to recognize our results showing an association do not prove causation. Our analysis only considered the overall association between cEEG approach and successful response to initial seizure treatment. We were not able to examine all potentially relevant intermediary steps, such as time to cEEG initiation, time to seizure recognition, and time to first ASM administration. However, studies of pediatric patients have found longer duration of seizure prior to treatment is associated with a more refractory course.17,18 This may be mediated at a cellular level by the internalization of inhibitory receptors as a result of prolonged seizure, among other mechanisms.19 Ongoing research is required to understand better any potential causal relationship between screening cEEG approach and increased success in seizure control. Similarly, there was no significant difference in the specific ASM used between groups, thus further studies are needed to determine whether monitoring approach is a factor in clinician choice of ASM, and how this might impact outcomes. NSR data did not include details on timing of seizure burden or quantification of seizure burden; we were not able to assess how pre-treatment seizure burden impacted seizure control in each group. Nor were we able to assess all potentially relevant outcome measures, such as reduction in seizure burden in the absence of seizure resolution, or long-term outcomes. These are important avenues for future work: long-term neurodevelopmental follow up is underway for neonates participating in the \textit{NSR}.

An important limitation is that our primary outcome measure of successful response to initial treatment was defined by cEEG showing resolution of seizures within 30 minutes of first ASM administration. Thus, our primary analysis did not include neonates who never had seizures on
cEEG. This necessarily excluded those neonates with clinically diagnosed seizures that resolved prior to initiation of cEEG. While it is unknown if all of these neonates had true electrographic seizures, each was considered to have seizures by clinical diagnosis upon review by the site investigator. It is likely most had electro-clinical seizures at the time of diagnosis, and that these resolved at some point prior to cEEG initiation, though not necessarily within 30 minutes of first ASM administration. By excluding neonates who had apparent resolution prior to cEEG, the confirmatory cEEG approach group for the primary analysis may have included a higher proportion of neonates with more treatment-resistant seizures. To address this, we performed sensitivity analysis modelling how our results would change if the excluded neonates had been included; sensitivity analysis supported the findings of our primary analysis.

Similarly, we recognize that whether a neonate receives screening or confirmatory cEEG is not wholly at the discretion of the provider—for example, neonates may be transferred to referral centers only after clinical seizures are recognized. This is reflected in our own results, as 10 neonates had screening cEEG ordered prior to onset of clinical seizures, but then developed clinical seizures in the interval between the decision to order cEEG and initiation of cEEG recording. At the same time, it is possible to set a preferred strategy of screening or confirmatory cEEG for high-risk patients, such as those with hypoxic-ischemic encephalopathy, through development of unit guidelines or institutional pathways. Thus, we find evidence to support the use of a screening cEEG approach clinically relevant even as the option is not available for every patient. Finally, future research should investigate whether the benefit of improved seizure control may be seen with approaches that are less resource-intensive, such as screening cEEG for 24 hours with continued monitoring only for those identified to be at ongoing risk for seizures.

These findings provide evidence from a large, contemporary cohort of neonates that a screening cEEG strategy may improve rates of initial treatment success for acute symptomatic seizures.
The use of cEEG to screen high-risk neonates for seizures before clinical seizures occur (screening cEEG) is associated with improved odds of seizure treatment success as compared to performing cEEG only after seizures are observed (confirmatory cEEG). This supports the clinical practice of screening cEEG for seizures in high-risk neonates.
Table 1. Demographic and clinical characteristics by continuous EEG monitoring (cEEG) approach.

<table>
<thead>
<tr>
<th></th>
<th>cEEG Approach</th>
<th></th>
<th>Absolute standardized difference*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screening cEEG</td>
<td>Confirmatory cEEG N=353</td>
<td></td>
</tr>
<tr>
<td>N=161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>68 (42.2)</td>
<td>151 (42.8)</td>
<td>0.01</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>73 (45.3)</td>
<td>199 (56.4)</td>
<td>0.29*</td>
</tr>
<tr>
<td>Black / African American</td>
<td>23 (14.3)</td>
<td>43 (12.2)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>16 (9.9)</td>
<td>22 (6.2)</td>
<td></td>
</tr>
<tr>
<td>More than one race</td>
<td>3 (1.9)</td>
<td>12 (3.4)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>23 (14.3)</td>
<td>33 (9.4)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>23 (14.3)</td>
<td>44 (12.5)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>30 (18.6)</td>
<td>51 (14.5)</td>
<td>0.14</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>113 (70.2)</td>
<td>258 (73.1)</td>
<td></td>
</tr>
<tr>
<td>Unknown/Not reported</td>
<td>18 (11.2)</td>
<td>44 (12.5)</td>
<td></td>
</tr>
<tr>
<td>Gestational age at birth (weeks)</td>
<td>38.4 ± 2.9</td>
<td>38.5 ± 3.4, n=350</td>
<td>0.05</td>
</tr>
<tr>
<td>Birth weight (kg)</td>
<td>3.1 ± 0.7, n=160</td>
<td>3.2 ± 0.8, n=345</td>
<td>0.13</td>
</tr>
<tr>
<td>Apgar score: 1 minute</td>
<td>2 (1-5), n=154</td>
<td>5 (2-8), n=327</td>
<td>0.68*</td>
</tr>
<tr>
<td>Apgar score: 5 minutes</td>
<td>4 (2-7), n=155</td>
<td>8 (5-9), n=326</td>
<td>0.81*</td>
</tr>
<tr>
<td></td>
<td>5 (3-6), n=106</td>
<td>7 (5-8), n=117</td>
<td>0.46*</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Apgar score: 10 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary seizure etiology</td>
<td></td>
<td></td>
<td>0.87*</td>
</tr>
<tr>
<td>Hypoxic ischemic encephalopathy</td>
<td>118 (73.3)</td>
<td>123 (34.8)</td>
<td></td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>21 (13.0)</td>
<td>73 (20.7)</td>
<td></td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>17 (10.6)</td>
<td>104 (29.5)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>5 (3.1)</td>
<td>53 (15.0)</td>
<td></td>
</tr>
<tr>
<td>Age at cEEG initiation in hours</td>
<td>11.6 (8.2-59)</td>
<td>44.6 (20.6-147.6)</td>
<td>0.16</td>
</tr>
<tr>
<td>Duration of cEEG in hours</td>
<td>87.0 (68.9-101.4)</td>
<td>61.7 (40.6-84.0)</td>
<td>0.62*</td>
</tr>
<tr>
<td>Clinical seizures prior to cEEG</td>
<td>10 (6.2)</td>
<td>312 (88.4)</td>
<td>2.90*</td>
</tr>
<tr>
<td>Phenobarbital given prior to cEEG</td>
<td>8 (5.0)</td>
<td>195 (55.2)</td>
<td>1.31*</td>
</tr>
<tr>
<td>Therapeutic hypothermia</td>
<td>106 (66.3)</td>
<td>53 (15.0)</td>
<td>1.22*</td>
</tr>
<tr>
<td>Initial medication used for loading</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>148 (91.9)</td>
<td>333 (94.3)</td>
<td></td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>9 (5.6)</td>
<td>15 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Phenytoin / Fosphenytoin</td>
<td>2 (1.2)</td>
<td>2 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1 (0.3)</td>
<td></td>
</tr>
<tr>
<td>No loading dose given</td>
<td>2 (1.2)</td>
<td>2 (0.6)</td>
<td></td>
</tr>
<tr>
<td>High seizure burden at any time during NICU admission</td>
<td>68 (42.2)</td>
<td>199 (56.4)</td>
<td>0.28*</td>
</tr>
<tr>
<td>Status epilepticus at any time during NICU admission</td>
<td>32 (19.9)</td>
<td>74 (21.0)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data are presented as N (%) or mean ± SD or median (interquartile range).

*An imbalance between study groups is defined as values greater than 0.20
Table 2. Outcome by cEEG approach.

<table>
<thead>
<tr>
<th></th>
<th>Screening cEEG</th>
<th>Confirmatory cEEG</th>
<th>Odds ratio (95% CI)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>p-value (unadjusted)</td>
<td>p-value (adjusted*)</td>
</tr>
<tr>
<td>Primary analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonates included</td>
<td>161 (31.3)</td>
<td>353 (68.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful treatment response</td>
<td>63 (39.1)</td>
<td>65 (18.4)</td>
<td>2.85 (1.88-4.32)</td>
<td>2.44 (1.45-4.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p<0.0001</td>
<td>P=0.0008</td>
</tr>
<tr>
<td>Subgroup analysis: Hypoxic-ischemic encephalopathy seizure etiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonates included</td>
<td>118 (49)</td>
<td>123 (51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful treatment response</td>
<td>47 (39.8)</td>
<td>26 (21.1)</td>
<td>2.51 (1.42-4.43)</td>
<td>2.15 (1.14-4.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p=0.002</td>
<td>p=0.02</td>
</tr>
</tbody>
</table>

*Multivariable analysis adjusted for: Apgar score at 5 minutes, primary seizure etiology category, presence/absence of multiple seizure etiologies, and whether the patient underwent therapeutic hypothermia.
Appendix 1: Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courtney J. Wusthoff, MD, MS</td>
<td>Stanford University, Palo Alto</td>
<td>Design and conceptualized the study; analyzed the data; drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Vandana Sundaram, MPH</td>
<td>Stanford University, Palo Alto</td>
<td>Design and performed the statistical analysis; drafted figures; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Nicholas S. Abend, MD MSCE</td>
<td>University of Pennsylvania, Philadelphia</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Shavonne L. Massey, MD MSCE</td>
<td>University of Pennsylvania, Philadelphia</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Monica E. Lemmon, MD</td>
<td>Duke University, Durham</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Cameron W. Thomas, MD, MS</td>
<td>University of Cincinnati, Cincinnati</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Charles E. McCulloch, PhD</td>
<td>University of California, San Francisco</td>
<td>Design of the statistical analysis; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Taeun Chang, MD</td>
<td>George Washington University School of Medicine, Washington, DC</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Janet S. Soul, MDCM</td>
<td>Harvard Medical School, Boston</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Catherine J. Chu, MD, MA, MMSc</td>
<td>Harvard Medical School, Boston</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Elizabeth E. Rogers, MD</td>
<td>University of California, San Francisco</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Sonia L. Bonifacio, MD</td>
<td>Stanford University, Palo Alto</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>M. Roberta Cilio, MD, PhD</td>
<td>Université Catholique de Louvain, Brussels</td>
<td>Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Hannah C. Glass, MDCM</td>
<td>University of California, San Francisco</td>
<td>Design and conceptualization of study cohort; Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Renee Shellhaas, MD, MS</td>
<td>University of Michigan, Ann Arbor</td>
<td>Design and conceptualization of study cohort; Acquisition and interpretation of data; revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>
Appendix 2: Coinvestigators

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Role</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam L. Numis, MD</td>
<td>University of California, San Francisco</td>
<td>Site Investigator</td>
<td>Contributed toward identification and enrollment of subjects</td>
</tr>
<tr>
<td>Ronnie Guillet, MD, PhD</td>
<td>University of Rochester, New York</td>
<td>Co-investigator</td>
<td>Provided input on NSR study processes</td>
</tr>
<tr>
<td>Linda S. Franck, RN, PhD</td>
<td>University of California, San Francisco</td>
<td>Co-investigator</td>
<td>Provided input on NSR study processes</td>
</tr>
<tr>
<td>Marty Barnes</td>
<td>Austin, TX</td>
<td>Parent Partner</td>
<td>Provided parental perspective toward NSR study processes</td>
</tr>
<tr>
<td>Tammy Tsuchida, MD</td>
<td>Children’s National Hospital, Washington, D.C.</td>
<td>Co-investigator</td>
<td>Contributed toward identification and enrollment of subjects</td>
</tr>
</tbody>
</table>
Acknowledgments

We acknowledge the NSR parent partner group for their input toward this project, as well as the study coordinators at the NSR centers.
References

Figure Legends

Figure 1. Participant inclusion for primary analytic cohort.

Neonates in database
\(N = 782\)

- Excluded — eligibility criteria not met \(n = 253; 32\%\):
 - No seizures on study EEG \(126; 50\%\):
 - Clinical seizures but no seizure captured on any EEG \(95\%\)
 - Clinical seizures and seizure on outside EEG, but no seizure on study EEG \(17\%\)
 - Only seizures on outside EEG, no clinical seizures \(8\%\)
 - Nonepileptic events only \(5\%\)
 - Seizure type indicated \(1\%\)
 - Etiology:
 - Electrolyte disturbance \(6\%\)
 - Brain malformation \(19\%\)
 - Inborn error of metabolism \(15\%\)
 - Familial neonatal epilepsy \(10\%\)
 - Neonatal onset epilepsy \(37\%\)
 - Hypoglycemia \(12\%\)
 - Other \(28\%\)

Neonates meeting eligibility criteria
\(n = 529; 68\%\)

- Excluded \(n = 15; 3\%\):
 - EEG indication: Abnormal imaging, congenital ventriculomegaly, abnormal imaging, tuberous sclerosis, or not specified \(4\%; 27\%\)
 - Primary outcome missing \(11\%; 73\%\)

Analytic cohort
\(n = 514; 97\%\)

Screening cEEG
\(n = 161; 31\%\)

Confirmatory cEEG
\(n = 353; 69\%\)
Figure 2. Participant inclusion for sensitivity analytic cohort.
Figure 3. Simulation results modelling varied assumed treatment success rates for patients with missing outcome data.
Seizure Control in Neonates Undergoing Screening vs Confirmatory EEG Monitoring
Courtney J. Wusthoff, Vandana Sundaram, Nicholas S. Abend, et al.
Neurology published online June 2, 2021
DOI 10.1212/WNL.0000000000012293

This information is current as of June 2, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/06/02/WNL.0000000000012293.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Class III
http://n.neurology.org/cgi/collection/class_iii
Critical care
http://n.neurology.org/cgi/collection/critical_care
EEG
http://n.neurology.org/cgi/collection/eeg
EEG; see Epilepsy/Seizures
http://n.neurology.org/cgi/collection/eeg_see_epilepsy-seizures
Neonatal
http://n.neurology.org/cgi/collection/neonatal
Neonatal seizures
http://n.neurology.org/cgi/collection/neonatal_seizures

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise