Teaching NeuroImages: Central Pontine Myelinolysis in Diabetic Ketoacidosis

Natalia Gonzalez Caldito, Nurose Karim, Mehari Gebreyohanns

1Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Search terms: Central pontine myelinolysis, osmotic demyelination syndrome, pons, brainstem, metabolic diseases.

Submission type: Teaching NeuroImage (resident & fellow section)

Title character count (with spaces): 54

Number of tables: N/A

Number of figures: 1

Word count abstract: N/A

Word count of manuscript: 150

Corresponding author: Mehari Gebreyohanns, MD, FAHA, FAAN,

mehari.gebreyohanns@utsouthwestern.edu

Disclosure

Natalia Gonzalez Caldito, Nurose Karim, and Mehari Gebreyohanns report no disclosures relevant to the manuscript.

Written consent was not obtained.
DESCRIPTION

Central Pontine Myelinolysis (CPM) is a clinically heterogeneous neurological disorder of demyelination in the pons, usually from rapid correction of hyponatremia.1,2

A 38-year-old woman with uncontrolled type 1 DM (hbA1c 12.8\%) was admitted for diabetic ketoacidosis (731mg/dl blood glucose). Hyperglycemia was corrected within 24 hours to 129mg/dl. Upon presentation, the sodium and potassium levels were 139 and 3.9 mmol/L respectively, remaining stable until discharge. There was no history of malnutrition nor alcohol abuse.

Four days later, she developed acute diffuse pyramidal weakness. Brain MRI revealed symmetric restricted diffusion in the pons with a normal MR angiography (Figure 1). She remained stable and was discharged to a rehabilitation facility.

Diabetic ketoacidosis is an uncommon cause of CPM with uncertain physiopathology.3 Here, it is plausible that a rapid drop in osmolality in a chronic state of high osmolality (uncontrolled DM) lead to CPM. A slower correction of hyperglycemia could have possibly prevented it.
Appendix 1. Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natalia Gonzalez Caldito, MD</td>
<td>University of Texas Southwestern Medical Center</td>
<td>Patient management, literature review, gathered data and drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Nurose Karim, MD</td>
<td>University of Texas Southwestern Medical Center</td>
<td>Patient management and revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Mehari Gebreyohanns, MD</td>
<td>University of Texas Southwestern Medical Center</td>
<td>Patient management and revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>

Acknowledgements: N/A
BIBLIOGRAPHY

Figure 1: Central pontine myelinolysis in diabetic ketoacidosis

T2-FLAIR revealing symmetric hyperintensities centered in the pons (A) with restricted diffusion (B). T1 post contrast with gadolinium demonstrated no enhancement (C).

FLAIR: fluid-attenuated inversion recovery; DWI: diffusion-weighted magnetic resonance imaging; Post GAD: post gadolinium. MRI: Magnetic Resonance Imaging
Teaching NeuroImages: Central Pontine Myelinolysis in Diabetic Ketoacidosis
Natalia Gonzalez Caldito, Nurose Karim and Mehari Gebreyohanns
Neurology published online June 2, 2021
DOI 10.1212/WNL.0000000000012301

This information is current as of June 2, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/06/02/WNL.0000000000012301.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
All Demyelinating disease (CNS)
http://n.neurology.org/cgi/collection/all_demyelinating_disease_cns
All Medical/Systemic disease
http://n.neurology.org/cgi/collection/all_medical_systemic_disease
Endocrine
http://n.neurology.org/cgi/collection/endocrine
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise