Impact of Renal Impairment on Intensive Blood-Pressure-Lowering Therapy and Outcomes in Intracerebral Hemorrhage: Results From ATACH-2

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Clinical Trial registration number: Clinicaltrials.gov identifier: NCT01176565.

Statistical Analysis performed by: Mayumi Fukuda-Doi, MD, MPH, PhD National Cerebral and Cardiovascular Center

Acknowledgements: We thank Professor Yuko Y Palesch for statistical advice.

Study Funding: This study is supported by grants from the National Institute of Neurological Disorders and Stroke (NINDS; U01-NS062091, U01-NS061861, U01-NS059041), Japan Agency for Medical Research and Development (AMED; 20lk0201094h0002, 20lk0201109h0001), and the Ministry of Education, Culture, Sports, Science and Technology (MEXT; Funds for the Development of Human Resources in Science and Technology, Initiative for Realizing Diversity in the Research Environment)

Disclosures: K. Toyoda reports personal fees from Daiichi-Sankyo, Bayer Yakuhin, Bristol Myers Squibb, Takeda, and Nippon Boehringer Ingelheim, outside the submitted work. M. Koga reports personal fees from Bayer Yakuhin, Otsuka, Daiichi-Sankyo, NBI, and Ono, grants from Takeda, Daiichi-Sankyo, NBI, and Shionogi, outside the submitted work. M. Ihara reports personal fees from Daiichi Sankyo, Eisai, and Bayer, grants from Panasonic, Bristol-Myers Squibb, and Otsuka Pharmaceutical, outside the submitted work. Others report no disclosures relevant to the manuscript.
ABSTRACT

Background and Objectives: The clinical impact of renal impairment on intracerebral hemorrhage (ICH) is unknown. This study sought to exploratory assess whether the estimated glomerular filtration rate (eGFR) affects clinical outcomes or modifies the efficacy of intensive systolic blood pressure (BP) control (target, 110–139 mmHg) against the standard (target, 140–179 mmHg) among patients with ICH.

Methods: We conducted post-hoc analyses of ATACH-2, a randomized, two-group, open-label trial. The baseline eGFR of each eligible patient was calculated using the Chronic Kidney Disease Epidemiology Collaboration equation. The outcome of interest was death or disability at 90 days. Multivariate logistic regression models were used for analysis.

Results: Among the 1000 patients randomized, 974 were analyzed. The median baseline eGFR was 88 (interquartile range: 68, 99) ml/min/1.73 m²; 451 (46.3%), 363 (37.3%) and 160 (16.4%) patients had baseline eGFR values of ≥90, 60–89, and <60 ml/min/1.73 m², respectively. Compared with normal eGFR (≥90 ml/min/1.73 m²), higher odds of death or disability were noted among those with eGFR values of <60 ml/min/1.73 m² (adjusted odds ratio (OR) 2.02, 95% confidence interval (CI) 1.25–3.26) but not among those with eGFR values of 60–89 ml/min/1.73 m² (OR 1.01, 95% CI 0.70–1.46). The odds of death or disability were significantly higher in the intensive arm among patients with decreased eGFR; the ORs were 0.89 (95% CI 0.55–1.44), 1.13 (0.68–1.89), and 3.60 (1.47–8.80) in patients with eGFR values of ≥90, 60–89, and <60 ml/min/1.73 m², respectively (p for interaction = 0.02).

Discussion: Decreased eGFR is associated with unfavorable outcomes following ICH. The statistically significant interaction between the eGFR group and treatment assignment raised safety concerns for the intensive BP-lowering therapy among patients with renal impairment.

Trial Registration Information: Clinicaltrials.gov (NCT01176565), first submitted on August 6, 2010. The first patient enrolled on May 2011.

Classification of Evidence: This study provides Class II evidence that in spontaneous ICH, decreased eGFR identifies patients at risk of death or disability following intensive blood pressure control.
Stroke and chronic kidney disease (CKD) are serious public health concerns. CKD, mainly characterized by a reduced estimated glomerular filtration rate (eGFR), is common among patients with stroke and is associated with unfavorable outcomes.1-3

Intensive blood pressure (BP) lowering is a plausible therapeutic option for intracerebral hemorrhage (ICH); however, intensive BP control has an existing controversy in patients with CKD. According to some observational studies, CKD attenuates the beneficial effects of intensive systolic BP (SBP) control.4, 5 The post hoc analysis of the Systolic Blood Pressure Intervention Trial (SPRINT) reported that intensive BP control increases acute kidney injury (AKI) incidence and provides little or no cardiovascular benefit in patients with moderate-to-severe CKD.6, 7 Unfortunately, these studies did not include patients with acute stroke. Among patients with ICH, the Second Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) demonstrated that intensive SBP lowering yielded a modest improvement in functional outcomes compared with the standard; its post-hoc analysis revealed that the effects of early intensive BP lowering were consistent across different eGFRs. Meanwhile, in the Antihypertensive Treatment of Acute Cerebral Hemorrhage II (ATACH-2) study, which investigated the efficacy of intensive (target 110–139 mmHg) versus standard (target 140–179 mmHg) SBP-lowering initiated within 4.5 h after symptom onset, intensive SBP-lowering therapy did not improve the functional outcomes but raised concerns for renal adverse events (AEs). The intensive treatment group had a twofold higher rate of renal AEs than the standard treatment group (9.0% vs. 4.0%).8

These findings suggest that the safety of intensive SBP-lowering therapy in acute ICH remains a concern, especially among patients with CKD. Understanding the impact of renal function on clinical outcomes and treatment is crucial when selecting the target population of intensive SBP-lowering therapy. Therefore, using the ATACH-2 trial data, this study aimed to explore the impact of eGFR on clinical outcomes and its interaction with intensive BP-lowering treatment among patients with ICH.
METHODS

Classification of Evidence

The primary research question was whether renal impairment affects clinical outcomes or modifies the efficacy of intensive SBP control in patients with intracerebral hemorrhage. This study provides Class II evidence that, in spontaneous ICH, decreased eGFR identifies patients at risk of death or disability following intensive blood pressure control.

Study Design

ATACH-2 was an international, multicenter, randomized, two-group, open-label, and blinded endpoint trial that examined the efficacy of intensive SBP lowering in patients with spontaneous supratentorial ICH. The trial has also been thoroughly described in a previous report. Briefly, patients with primary ICH of <60 ml and SBP of >180 mmHg upon hospital arrival within 4.5 h of onset were randomly assigned to intensive (SBP: 110–139 mmHg) or standard (SBP: 140–179 mmHg) treatment. Meanwhile, those with a Glasgow Coma Scale (GCS) score of <5, prothrombin time international normalized ratio of >1.5 at presentation, or premorbid disability requiring assistance in ambulation or daily activities were excluded from the trial. The hourly minimum SBP of each patient was reduced to the assigned target range using intravenous nicardipine within 2 h and maintained through 24 h after randomization.

Clinical Variables and Outcome Measures

The primary outcome was a composite of death within 90 days or severe disability at 90 days, corresponding to the modified Rankin Scale (mRS) score of 4–6 (hereafter referred to as “death or disability”). The secondary outcome was only death within 90 days. Hematoma expansion was defined as an increase in volume (>6 ml and/or >33% increase from the baseline) at computed tomography (CT) conducted at 24 h. Receiving surgical evacuation of hematoma was also treated as hematoma expansion. For each patient, creatinine values were obtained at baseline, 24, 48, and 72 h after randomization. The baseline eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Patients were categorized into three groups according to their baseline eGFRs: ≥90, 60–89, and <60 ml/min/1.73 m², respectively. Patients with kidney failure (eGFR<15 ml/min/1.73 m²) with or
without renal replacement therapy were excluded. To avoid the leverage of extreme values, we also excluded those with the highest 1% of eGFR values. AKI was identified using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria: ≥ 0.3 mg/dL within 48 h or >1.5-fold increase in the serum creatinine level compared with that at baseline or preceding values.\(^{10}\)

Statistical Analysis

The demographic and baseline clinical characteristics for categorical variables were presented as number (percent). Such characteristics were expressed as the mean (SD) for continuous variables with normal distribution and the median (interquartile range [IQR]) for those with skewed distribution. The baseline characteristics across the eGFR categories were compared using the chi-square test, ANOVA, or Kruskal–Wallis test, as appropriate. The generalized linear mixed-effects model was used for identifying the differences in achieved SBP profiles per treatment and eGFR categories. The relationship between eGFR and clinical outcome was examined by multivariate logistic regression, and the outcome was presented as odds ratios (ORs) with 95% confidence intervals (CIs). The potential nonlinear relationship between eGFR and the adjusted ORs of the outcome was illustrated by a restricted cubic splines curve with three knots.\(^{11,12}\) The treatment effects of BP-lowering (intensive vs. standard) were explored per eGFR by adding interaction terms to the logistic regression model. Potential interactions between treatment and eGFR as a continuous variable were investigated using the multivariable fractional polynomial interaction (MFPI) approach and illustrated by plotting the estimated ORs and 95% CIs of outcomes according to the continuous eGFR level.\(^{13}\)

In these analyses, two models were employed to evaluate robustness. The models were adjusted for the following covariates selected a priori according to the clinical knowledge: age (continuous), GCS score (continuous), presence of intraventricular hemorrhage (IVH) (dichotomized) (model 1), model 1 plus sex, treatment allocation (dichotomized), hematoma volume (continuous), and hematoma expansion (dichotomized) (model 2). Considering that we aimed to find the population with a potentially high risk for intensive treatment, we excluded hematoma expansion in the model to evaluate eGFR and treatment interaction.

The impact of AKI on the association between baseline eGFR and outcome or between treatment and
outcome was identified by logistic regression using the interaction terms AKI-by-eGFR, and AKI-by-treatment, respectively. Furthermore, mediation analyses were conducted using a method reported by Discacciati et al.14

All missing data were handled in a listwise deletion manner. Multiple imputations (MI) were conducted as sensitivity analyses, accounting for any missing data, including outcome and covariates. We also used eGFR calculated using the modification of diet in renal disease (MDRD) equation to check the consistency of the results.15 Sensitivity analysis including all participants was conducted for completeness. All data were analyzed using STATA SE version 16 (STATA Corporation, College Station, TX, USA) or SAS university edition (SAS Institute Inc., 2020; https://www.sas.com/en_us/software/university-edition.html). Moreover, p < 0.10 and p < 0.05 were considered statistically significant for assessing the interaction and the main effects, respectively.

Standard Protocol Approvals, Registrations, and Patient Consents

ATACH-2 was registered in ClinicalTrials.gov (Unique identifier: NCT01176565). The institutional review board or the ethics committee at each participating site approved the ATACH-2 protocol, and all participants or their legally authorized representatives provided written informed consent.

Data Availability

The ATACH-2 dataset is currently available to the public by requesting the National Institute of Neurological Disorders and Stroke. All data are de-identified.
RESULTS

Baseline characteristics

The flow diagram of this study is presented in Figure 1. Among 1000 patients enrolled in ATACH-2, 974 were analyzed. The median baseline eGFR was 88 (IQR: 68–99) ml/min/1.73 m². Among these patients, 451 (46.3%), 363 (37.3%), and 160 (16.4%) had baseline eGFR values of ≥90, 60–89, and <60 ml/min/1.73 m², respectively. Among them, 38 (4.0%) of the primary outcome, 22 (2.3%) of hematoma expansion, and 9 (0.9%) of IVH are missing; the missingness is similar across the eGFR subgroup.

Patients’ demographic and clinical characteristics by the baseline eGFR category were displayed in Table 1. Patients with decreased eGFR were older, more frequently had hypertension, dyslipidemia, atrial fibrillation, and diabetes mellitus, had more often been prescribed with antihypertensive agents before the ICH onset, and had fewer Asians than those with normal eGFR. Among the eGFR categories, baseline stroke severity, described by GCS or National Institutes of Health Stroke Scale (NIHSS), was almost identical (p = 0.93, and p = 0.98, respectively). Meanwhile, the baseline hematoma volume was the least in the CKD group. The proportion of hematoma expansion after randomization was not significantly different, but the rate of AKI nearly doubled in the CKD group than in others; 23.4 %, 11.2 %, and 10.9%, for the baseline eGFR of <60, 60–89, and ≥90 ml/min/1.73 m², respectively.

Figure 2 depicts the mean hourly minimum SBP profiles of intensive vs. standard BP-lowering in each baseline eGFR category. In the intensive group, the SBP pattern is different among the three categories of eGFR (p < 0.01). Patients with decreased eGFR (<60 ml/min/1.73 m²) maintained a relatively higher SBP than the other patients.

Impact of renal impairment on clinical outcomes

The rates of death or disability (mRS: 4–6) were 31.7%, 40.0%, and 49.7% in patients with baseline eGFR values of ≥90, 60–89, and <60 ml/min/1.73 m², respectively (p < 0.01). After adjustment, patients with decreased eGFR (eGFR<60 ml/min/1.73 m²) had higher odds of death or disability (adjusted ORs: 1.72 (1.12–2.64) in model 1, and 2.02(1.25–3.26) in model 2 than those with eGFR ≥90 ml/min/1.73 m². However, the linear trend was not observed for eGFR categories in both models because the adjusted ORs in those with mildly decreased eGFR (60–89 ml/min/1.73 m²) crossed 1. The association between eGFR...
category and death was not confirmed (Table 2).

Figure 3 displays the nonlinear relationship between baseline eGFR (as a continuous variable) and clinical outcomes. Herein, we set eGFR = 60 ml/min/1.73 m2 as the reference. If the eGFR was <60 ml/min/1.73 m2, the OR of death or disability (mRS score 4–6) significantly increased. In sensitivity analyses using the MDRD equation or MI, the baseline eGFR had a similar relationship with the outcome (eTable 1-A & 1-B available from Dryad: https://doi.org/10.5061/dryad.d51c5b035). Furthermore, when all patients were included, the results were similar (eTable 1-C available from Dryad: https://doi.org/10.5061/dryad.d51c5b035).

Treatment efficacy according to baseline renal function

The treatment-by-eGFR category interaction for death or disability in models 1 and 2 was statistically significant (p for interaction = 0.06 and 0.02, respectively), but not for death (p for interaction = 0.34 and 0.54, respectively) (Figure 4). In the fractional polynomial analysis, eGFR exhibited a nonlinear interaction effect (p for interaction = 0.041 and 0.025 in models 1 and 2, respectively). The ORs of death and disability were significantly increased in patients with decreased baseline eGFR undergoing intensive BP-lowering therapy (Figure 5). The results were consistent in sensitivity analyses using the MDRD equation (eTable 2-A available from Dryad: https://doi.org/10.5061/dryad.d51c5b035) and MI (eTable 2-B available from Dryad: https://doi.org/10.5061/dryad.d51c5b035). When all patients were included in the analysis, we observed a similar trend (eTable 2-C available from Dryad: https://doi.org/10.5061/dryad.d51c5b035).

Impact of AKI on the treatment and clinical outcome

AKI did not affect the association of baseline eGFR with death or disability (p for interaction = 0.55) or of treatment with the outcome (p for interaction = 0.77) in the study population. From the med4way procedure, AKI did not significantly mediate the association between treatment and death or disability (percentage mediated was 5%, p = 0.98) among the subgroup of patients with reduced eGFR (eGFR <60 ml/min/1.73 m2).
DISCUSSION

In the present post hoc analysis of ATACH-2, we described the association of baseline eGFR with functional outcomes. After relevant clinical and demographic factors were adjusted, the eGFR on admission was independently associated with death or disability after ICH. Besides, the baseline eGFR modified the effect of intensive SBP-lowering. Intensive SBP-lowering therapy increased the risk of death or disability in patients with decreased baseline eGFR.

Previous studies support the association between decreased renal function and unfavorable outcomes after stroke. In another landmark clinical trial of ICH, INTERACT2, patients with decreased eGFR on admission had a high risk of poor functional outcomes. Our results are consistent with those of previous studies. Moreover, the relationship between eGFR and functional outcomes was nonlinear. On the basis of the reference eGFR value (60 ml/min/1.73 m^2), the risk of death or disability was significantly increased in patients with eGFR less than the reference value. However, it was consistent in those with eGFR >60 ml/min/1.73 m^2. The mechanism underlying the association between decreased eGFR and unfavorable outcomes is unknown. In our study, the initial NIHSS score and frequency of hematoma expansion were similar among baseline eGFR categories (Table 1). The possible explanations include an increased cerebrovascular risk due to shared vascular risk factors, such as hypertension, diabetes, and dyslipidemia, as well as CKD-specific pathophysiological mechanisms, including coagulation disorders, endothelial dysfunction, chronic inflammation, and oxidative stress.

Additionally, a higher incidence of cognitive impairment, depression, and sarcopenia in patients with CKD may affect functional recovery following ICH.

Another critical point is the therapeutic dilemmas for patients with CKD. Generally, maintaining the balance between high bleeding risk and high thromboembolic risk in patients with CKD is difficult for clinicians. Some therapeutic or diagnostic procedures, such as coronary angiography, may be hesitated because of renal toxicity risk (e.g., contrast-induced nephropathy). These dilemmas may lead to ‘therapeutic nihilism’; therefore, cardiovascular diseases are frequently under-diagnosed and under-treated in patients with CKD.

In this study, the mean BP achieved in patients with decreased eGFR was slightly higher than that achieved in others in the intensive arm, reflecting not just the potential therapeutic resistance to nicardipine but the possible psychological resistance of clinicians against
excessive BP reduction arising from the concerns of renal toxicity. Renal impairment itself can modify the treatment effect in acute stroke. In our study, the intensive SBP-lowering increased the risk of death or disability among patients with decreased eGFR; meanwhile, in the post hoc analysis of INTERACT2, decreased eGFR did not modify the treatment effect of intensive SBP-lowering. The critical differences in the two trials are the baseline and achieved SBP levels and the antihypertensive regimen used for SBP control. In ATACH-2, all patients had an initial SBP ≥ 180 mm Hg; meanwhile, only 48% of the patients presented at the same level of SBP in INTERACT2. Subsequently, in ATACH-2, SBP was more rapidly and strictly reduced using intravenous nicardipine. Therefore, the achieved SBP was substantially lower in ATACH-2 than in INTERACT2. It is well-known that the ability to autoregulate the glomerular filtration rate in renal hypoperfusion (e.g., rapid SBP fall) is prone to be impaired in patients with CKD. In fact, AKI was highly prevalent among those with decreased eGFR on admission (p < 0.001, Table 1); unfortunately, renal events are not explicitly reported in INTERACT2 or the pooled analysis of the two trials. Because AKI may lead to poor cardiovascular outcomes, independent of or in conjunction with the CKD-related risks, we performed the mediation analysis to test whether AKI mediates between intensive SBP control and poor outcomes in patients with reduced eGFR. As a result, AKI was not the mediator between treatment and poor outcomes but the predictor for poor outcomes, as already reported in the entire ATACH-2 population. In this context, because the brain and kidneys share similar susceptibility to vascular injury, patients with decreased eGFR may be more susceptible to restricted cerebral perfusion by aggressive SBP lowering, resulting in delayed functional recovery. However, further studies are warranted to elucidate the mechanism.

Methodologically, the two studies are different in the manner of treating the eGFR value. In our study, given the potential nonlinear relationship between eGFR and outcome or treatment effect, a restricted cubic spline model and the MFPI approach were used aside from eGFR categorization. These approaches may contribute to preserving the statistical power to detect meaningful differences.

This study has some limitations. First, in the trial setting, we excluded some patients with typical ICH exhibiting more severe symptoms such as massive hematoma (≥60 cm³) or poor premorbid functional status, thereby limiting generalizability. Second, information regarding renal function such as proteinuria or eGFR value before the ICH onset was unavailable. Considering that serum creatinine is affected by
acute illness, uses this marker on admission, for reference, can be misleading. Third, we excluded 26 patients with extreme eGFR values. Patients with end-stage renal disease (ESRD) (eGFR <15 ml/min/1.73 m²) were excluded because the effect of intensive SBP-lowering on clinical outcomes may be different in this population. We also excluded extremely high eGFR (eGFR (≥127 ml/min/1.73 m²) because it may represent those with reduced muscle mass, such as the elderly, frail, and patients with other chronic muscle diseases, rather than an actual renal function. Our sensitivity analysis including those with extremely high eGFR values did not affect the interaction effects. Fourth, several sub-analyses of ATACH-2 have been completed. Considering the hypothesis-generating nature of post hoc analysis, careful interpretation is advised on any statistically significant findings due to multiple testing.

In conclusion, this post hoc analysis of ATACH-2 revealed that decreased eGFR was associated with death or disability after ICH. Furthermore, eGFR significantly modified the risk of intensive SBP-lowering in acute ICH, and intensive SBP-lowering is potentially harmful among patients with decreased eGFR. Further studies are required to address the optimal SBP target according to the baseline eGFR.
Appendix 1: Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayumi Fukuda-Doi, MD, M.P.H., PhD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2. Design and conceptualized the present study; analyzed the data; drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Haruko Yamamoto, MD PhD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2, Interpreted the data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Masatoshi Koga, MD, PhD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Yohei Doi, MD</td>
<td>Osaka University Graduate School of Medicine, Suita, Japan</td>
<td>Design of the present study; Interpreted the data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Adnan I Qureshi, MD</td>
<td>Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA</td>
<td>Execution of ATACH2, conception, and design of ATACH2, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Sohei Yoshimura, MD, PhD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Kaori Miwa, MD, PhD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Akiko Ishigami, MD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Masayuki Shiozawa, MD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Katsuhiro Omae, PhD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Interpreted the data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Masafumi Ihara, MD, PhD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2, revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Kazunori Toyoda, MD, PhD</td>
<td>National Cerebral and Cardiovascular Center, Suita, Japan</td>
<td>Execution of ATACH2, Design and conceptualized the present study; revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>
REFERENCES

doi:10.1016/S0140-6736(10)60674-5

doi:10.1016/j.jstrokecerebrovasdis.2014.08.015

Table 1. Patients’ demographic and clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>eGFR < 60 N = 160</th>
<th>eGFR 60–89 N = 363</th>
<th>eGFR ≥ 90 N = 451</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>66 ± 14</td>
<td>65 ± 14</td>
<td>58 ± 11</td>
<td><0.001</td>
</tr>
<tr>
<td>Female sex</td>
<td>61 (38.1%)</td>
<td>135 (37.2%)</td>
<td>178 (39.5%)</td>
<td>0.8</td>
</tr>
<tr>
<td>Race Asian</td>
<td>48 (30.1%)</td>
<td>168 (47.1%)</td>
<td>330 (73.8%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>69 (44.5%)</td>
<td>141 (39.5%)</td>
<td>72 (16.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Black</td>
<td>37 (23.8%)</td>
<td>45 (12.6%)</td>
<td>44 (9.8%)</td>
<td></td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>142 (88.8%)</td>
<td>277 (79.4%)</td>
<td>353 (80.2%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>64 (42.1%)</td>
<td>91 (27.1%)</td>
<td>81 (18.9%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>55 (34.8%)</td>
<td>54 (15.1%)</td>
<td>70 (15.6%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>7 (4.4%)</td>
<td>23 (6.5%)</td>
<td>4 (0.9%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>47 (29.6%)</td>
<td>69 (19.2%)</td>
<td>43 (9.6%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Antihypertensives</td>
<td>115 (72.8%)</td>
<td>187 (52.1%)</td>
<td>178 (39.6%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Onset-to-randomization, min</td>
<td>181 ± 55</td>
<td>188 ± 56</td>
<td>180 ± 59</td>
<td>0.37</td>
</tr>
<tr>
<td>Baseline GCS</td>
<td>15 (13,15)</td>
<td>15 (13,15)</td>
<td>15 (13,15)</td>
<td>0.93</td>
</tr>
<tr>
<td>Baseline NIHSS</td>
<td>11 (6,16)</td>
<td>11 (6,16)</td>
<td>11 (7,15)</td>
<td>0.98</td>
</tr>
<tr>
<td>Baseline CT findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVH</td>
<td>46 (28.9%)</td>
<td>105 (29.2%)</td>
<td>102 (22.9%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Hematoma volume, ml</td>
<td>8.1 (3.9,16.5)</td>
<td>9.6 (4.8,18.7)</td>
<td>10.9 (5.6,18.7)</td>
<td>0.04</td>
</tr>
<tr>
<td>Lobar hemorrhage</td>
<td>23 (14.6%)</td>
<td>56 (15.4%)</td>
<td>34 (7.5%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Allocated to intensive SBP-lowering</td>
<td>82 (51.3%)</td>
<td>184 (50.7%)</td>
<td>222 (49.2%)</td>
<td>0.87</td>
</tr>
<tr>
<td>Hematoma expansion</td>
<td>44 (28.0%)</td>
<td>105 (29.8%)</td>
<td>110 (24.8%)</td>
<td>0.28</td>
</tr>
<tr>
<td>AKI</td>
<td>37 (23.4%)</td>
<td>40 (11.2%)</td>
<td>49 (10.9%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
For categorical variables, n (%) are presented with chi-square p-value. For continuous variables, mean ± standard deviation (for parametric variables) or median [IQR] (for nonparametric variables) are presented with ANOVA or Kruskal–Wallis p-values. eGFR, estimated glomerular filtration rate; TIA, transient ischemic attack; GCS, Glasgow Coma Scale; NIHSS, National Institutes of Health Stroke; IVH, intraventricular hemorrhage; AKI, acute kidney injury
Table 2. Association between baseline eGFR category and clinical outcomes at 90 days

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Baseline eGFR</th>
<th>Number of events (%)</th>
<th>Crude ORs (95% CIs)</th>
<th>p for trend</th>
<th>Model 1 ORs (95% CIs)</th>
<th>p for trend</th>
<th>Model 2 ORs (95% CIs)</th>
<th>p for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death or disability</td>
<td>≥90</td>
<td>138/436 (31.7)</td>
<td>ref</td>
<td><0.01</td>
<td>ref</td>
<td>0.03</td>
<td>ref</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>60–89</td>
<td>138/345 (40.0)</td>
<td>1.44 (1.07–1.93)</td>
<td>1.06 (0.75–1.49)</td>
<td>1.01 (0.70–1.46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><60</td>
<td>77/155 (49.7)</td>
<td>2.13 (1.47–3.10)</td>
<td>1.72 (1.12–2.64)</td>
<td>2.02 (1.25–3.26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>≥90</td>
<td>13/436 (3.0)</td>
<td>ref</td>
<td><0.01</td>
<td>ref</td>
<td>0.03</td>
<td>ref</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>60–89</td>
<td>34/345 (9.9)</td>
<td>3.56 (1.85–6.85)</td>
<td>2.15 (1.06–4.36)</td>
<td>1.87 (0.88–3.99)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><60</td>
<td>17/155 (11.0)</td>
<td>4.01 (1.90–8.46)</td>
<td>2.46 (1.09–5.55)</td>
<td>2.08 (0.86–5.05)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

eGFR, estimated glomerular filtration rate (ml/min/1.73 m²); ORS, odds ratios; CIs, confidence intervals; ref, reference. Model 1: adjusted for age, baseline Glasgow Coma Scale (GCS) score, and intraventricular hemorrhage (IVH). Model 2: adjusted for age, baseline GCS score, IVH, sex, initial hematoma volume, treatment allocation, and hematoma expansion.
FIGURE LEGENDS

Figure 1. CONSORT flow diagram

![CONSORT flow diagram](image)

Figure 2. Mean minimum SBP profile grouped by treatment and eGFR category

![Mean minimum SBP profile](image)
Figure 3. Risk of death or disability across the baseline eGFR.

A restricted cubic splines curve with three knots illustrating the association of the baseline estimated glomerular filtration rate (eGFR) with odds ratios (solid line) and 95% confidence intervals (grey area). The model is adjusted for age, baseline GCS score, intraventricular hemorrhage, sex, initial hematoma volume, treatment allocation, and hematoma expansion. Reference value of eGFR: 60 ml/min/1.73 m².
Figure 4. Efficacy of intensive BP-lowering according to baseline eGFR categories

Adjusted odds ratios of death or disability (modified Rankin Scale: 4–6) and death among eGFR categories. Model 1: adjusted for age, baseline Glasgow Coma Scale (GCS) score, and intraventricular hemorrhage (IVH). Model 2: adjusted for age, baseline GCS score, IVH, sex, and initial hematoma volume. \(p_{int} \) represents p-values for interaction.

eGFR, estimated glomerular filtration rate (ml/min/1.73 m\(^2\)); No., number; CIs, confidence intervals.
Figure 5. Death or disability comparing intensive versus standard BP-lowering by the baseline eGFR

The multivariable fractional polynomial interaction plot shows the adjusted odds ratios (solid line) of death or disability (modified Rankin Scale score: 4–6), comparing intensive versus standard BP-lowering therapies across the range of continuous values of baseline eGFR. The gray area shows 95% confidence intervals. Models were adjusted for age, baseline GCS score, IVH, sex, and initial hematoma volume. The p-value is for interaction between baseline eGFR and treatment effect.

BP, blood pressure; eGFR, estimated glomerular filtration rate (ml/min/1.73 m²); No., number; CIs, confidence intervals.
Impact of Renal Impairment on Intensive Blood-Pressure-Lowering Therapy and Outcomes in Intracerebral Hemorrhage: Results From ATACH-2
Mayumi Fukuda-Doi, Haruko Yamamoto, Masatoshi Koga, et al.
Neurology published online July 1, 2021
DOI 10.1212/WNL.0000000000012442

This information is current as of July 1, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/07/01/WNL.0000000000012442.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Class II
http://n.neurology.org/cgi/collection/class_ii
Clinical trials Randomized controlled (CONSORT agreement)
http://n.neurology.org/cgi/collection/clincial_trials_randomized_controlled Consort_agreement
Intracerebral hemorrhage
http://n.neurology.org/cgi/collection/intracerebral_hemorrhage

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.