Teaching NeuroImages: Basal Ganglia T1 Hyperintensity and SWI Signal Diabetic Striatopathy in an 18-Year-Old Man With Type 1 Diabetes Mellitus

Author(s):
Jaclyn Tencer, MD; Sabrina Yum, MD

Corresponding Author:
Jaclyn Tencer
jstencer@gmail.com

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
An 18-year-old male with Type I diabetes presented with acute bilateral arm and leg ballismus and oral-buccal dyskinesia. Glucose was 394 and HgbA1c >14. Imaging revealed T1-hyperintensity and susceptibility effect within the basal ganglia (figure). Symptoms resolved over 48 hours with glucose control. A diagnosis of diabetic striatopathy was made. Diabetic striatopathy, also called hyperglycemic hemiballism/hemichorea, is most often described in older individuals with Type 2 diabetes. Clinical symptoms often resolve with glycemic control however many patients require pharmacologic treatments. Deep brain stimulation may be beneficial in cases with disabling involuntary movements. Hyperglycemia-induced vasculopathy may contribute to microhemorrhages on imaging.1,2
Figure
(A) Axial T1-weighted MRI showing hyperintensity in the caudate and putamen
(B) Axial Susceptibility Weighted Imaging showing abnormal signal in the corresponding region possibly reflecting microhemorrhages. Imaging changes can be differentiated from hypertensive hemorrhage by the absence of surrounding mass effect.

Teaching Slides -- http://links.lww.com/WNL/B467

References
Teaching NeuroImages: Basal Ganglia T1 Hyperintensity and SWI Signal Diabetic Striatopathy in an 18-Year-Old Man With Type 1 Diabetes Mellitus
Jaclyn Tencer and Sabrina Yum
Neurology published online July 14, 2021
DOI 10.1212/WNL.0000000000012489

This information is current as of July 14, 2021