Teaching NeuroImages: Bilateral Nucleus Tractus Solitarius Lesions in Neurogenic Respiratory Failure

Author(s):
Bindu Parayil Sankaran, MD, DM FRACP, PhD1,2; Saskia B Wortman, MD, PhD3,4; Michel A Willemsen, MD PhD3; Shanti Balasubramaniam, FRACP1,5

Corresponding Author:
Bindu Parayil Sankaran
bindu.parayilsankaran@health.nsw.gov.au

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
A 7-year-old girl with MEGD(H)EL [3- Methylglutaconic aciduria, dystonia-deafness, (hepatopathy), encephalopathy, Leigh-like syndrome, SERAC1][1] presented with worsening respiratory compromise. The evaluation showed type II respiratory failure (e.g., hypercapnic) necessitating mechanical ventilation. Cerebral MRI demonstrated progression of known changes in MEGD(H)EL (Fig A&B) and symmetric nucleus tractus solitarius (NTS) involvement (Fig C&D). She was ventilator dependent and subsequently succumbed to the disease.

Bilateral NTS involvement is a rare occurrence in a neurological setting.[2] NTS plays a crucial role in the continuous modulation of chemoreceptor mediated respiration and other respiratory reflexes.[2] This case illustrates the neuroimaging correlate of central neurogenic respiratory failure.
References

Title and legend to the figure:

Figure: Brain MRI

Brain MRI at age 2 years shows the classical ‘putaminal eye’ sign (A- arrows). MRI at age 7 years shows progressive atrophy and gliosis of basal ganglia and cortical atrophy (B) and bilateral symmetrical signal changes of the nucleus tractus solitarius on FLAIR (C- arrows) and T2-weighted images (D-arrows).
## Appendix 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bindu Parayil Sankaran MD DM FRACP PhD</td>
<td>Children’s Hospital at Westmead NSW Australia</td>
<td>Designed and conceptualized study; analyzed and interpreted the data; drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Saskia B Wortmann MD PhD</td>
<td>Amalia Children’s Hospital, Nijmegen, The Netherlands and Department of Pediatrics, University Children’s Hospital, Salzburg, Austria</td>
<td>Designed and conceptualized study; analyzed and interpreted the data; drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Michel A Willemsen MD PhD</td>
<td>Amalia Children’s Hospital, Nijmegen, The Netherlands</td>
<td>Designed and conceptualized study; analyzed and interpreted the data; drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Shanti Balasubramaniam FRACP</td>
<td>Children’s Hospital at Westmead NSW Australia</td>
<td>Designed and conceptualized study; analyzed and interpreted the data; drafted the manuscript for intellectual content</td>
</tr>
</tbody>
</table>
Teaching NeuroImages: Bilateral Nucleus Tractus Solitarius Lesions in Neurogenic Respiratory Failure
Bindu Parayil Sankaran, Saskia B Wortman, Michel A Willemsen, et al.
*Neurology* published online August 10, 2021
DOI 10.1212/WNL.0000000000012614

This information is current as of August 10, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/08/10/WNL.0000000000012614.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Pediatric
http://n.neurology.org/cgi/collection/all_pediatric
Metabolic disease (inherited)
http://n.neurology.org/cgi/collection/metabolic_disease_inherited
Mitochondrial disorders
http://n.neurology.org/cgi/collection/mitochondrial_disorders
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise