Teaching Video NeuroImages: Spontaneous Upbeat-Torsional Nystagmus From Medial Medullary Infarction

Author(s):
David Edward Hale, MD^1; Kemar Earl Green, DO^2

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
A 71-year-old man presented with acute dizziness and right-sided paresthesia. Examination revealed spontaneous torsional nystagmus (top pole of eyes beating to the left) with a milder upbeat component (Video 1), right-sided weakness, and right hemisensory loss. MRI brain showed an acute left medial medullary infarct (Figure 1). Spontaneous upbeat-torsional nystagmus typically results from selective damage to the vertical semicircular canals pathways in the medullary medial longitudinal fasciculus (MLF), often resulting in an ipsilesional-beating torsional nystagmus. It is important to note that extra-MLF lesions in the brachium conjunctivum and ventral tegmental tract can also produce similar findings (Figure 1). While upbeat-torsional nystagmus is more commonly observed in posterior canal benign paroxysmal positional vertigo, it is elicited by the Dix-Hallpike maneuver and is not continuous or spontaneous.

Appendix 1 Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>David E. Hale Jr., MD</td>
<td>The Johns Hopkins University School of Medicine, Baltimore</td>
<td>Drafted and revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Kemar E. Green, DO</td>
<td>The Johns Hopkins University School of Medicine, Baltimore</td>
<td>Revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>

References

Figure legend

Figure Title: Central localizations of spontaneous upbeat-torsional nystagmus

Figure 1 Diffusion-weighted imaging (DWI) revealing restricted diffusion in the left anterior medulla and paramedian left medulla (A) with apparent diffusion coefficient (ADC) correlation (B) suggesting an acute infarct. Pathway imaging (C) adapted from vertical semicircular canal pathways by Gold, D.² MLF and extra-MLF central localizations of spontaneous upbeat-torsional nystagmus. Patient’s ischemic stroke represented by lightning bolt in the MLF pathway. BC – brachium conjunctivum; VTT – ventral tegmental tract; MLF – medial longitudinal fasciculus; SVN – superior vestibular nucleus; LVN – lateral vestibular nucleus; MVN – medial vestibular nucleus; IV – fourth nerve nucleus; III – third nerve nucleus; INC – interstitial nucleus of Cajal.
Video legend

Video 1 showing spontaneous torsional nystagmus (top pole of eyes beating to the left) with a mild upbeat component, and unidirectional torsional nystagmus with top poles beating to the left in both left and right eccentric gaze.
Teaching Video NeuroImages: Spontaneous Upbeat-Torsional Nystagmus From Medial Medullary Infarction

David Edward Hale and Kemar Earl Green

Neurology published online August 16, 2021
DOI 10.1212/WNL.0000000000012659

This information is current as of August 16, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/08/16/WNL.0000000000012659.citation.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
Nystagmus
http://n.neurology.org/cgi/collection/nystagmus
Ocular motility
http://n.neurology.org/cgi/collection/ocular_motility
Vertigo
http://n.neurology.org/cgi/collection/vertigo

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise