Neuropsychiatric and Cognitive Symptoms Across the Alzheimer Disease Clinical Spectrum: Cross-sectional and Longitudinal Associations

Author(s):
Willem S. Eikelboom, MSc 1; Esther van den Berg, PhD 1; Ellen H. Singleton, MSc 2; Sara J. Baart, PhD 3; Michiel Coesmans, PhD 4; Annebet E. Leeuwis, PhD 5; Charlotte E. Teunissen, PhD 6; Bart N.M. van Berckel, PhD 6; Yolande A.L. Pijnenburg, PhD 7; Philip Scheltens, PhD 7; Wiesje M. van der Flier, PhD 2; Rik Ossenkoppele, PhD 2, 7; Janne M. Papma, PhD 1

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Corresponding Author:
Janne M. Papma
j.papma@erasmusmc.nl

Affiliation Information for All Authors: 1. Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; 2. Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands; 3. Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; 4. Department of Psychiatry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; 5. Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, the Netherlands; 6. Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands; 7. Clinical Memory Research Unit, Lund University, Malmö, Sweden;

Contributions:
Willem S. Eikelboom: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Esther van den Berg: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Ellen H. Singleton: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Sara J. Baart: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Michiel Coesmans: Drafting/revision of the manuscript for content, including medical writing for content
Annebet E. Leeuwis: Drafting/revision of the manuscript for content, including medical writing for content; Additional contributions: involved in the acquisition of neuropsychological data
Charlotte E. Teunissen: Drafting/revision of the manuscript for content, including medical writing for content; Additional contributions: involved in the acquisition of CSF biomarker data
Bart N.M. van Berckel: Drafting/revision of the manuscript for content, including medical writing for content; Additional contributions: involved in the acquisition of PET data
Yolande A.L. Pijnenburg: Drafting/revision of the manuscript for content, including medical writing for content
Philip Scheltens: Drafting/revision of the manuscript for content, including medical writing for content; Additional contributions: contributed to the acquisition of patient data from the Amsterdam Dementia Cohort
Wiesje M. van der Flier: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data; Additional contributions: contributed to the acquisition of patient data from the Amsterdam Dementia Cohort
Rik Ossenkoppele: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data
Janne M. Papma: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data

Publication History: This manuscript was pre-published in medRxiv: https://doi.org/10.1101/2021.02.18.21251064.

Number of characters in title: 135

Abstract Word count: 308
Supplemental: Revised manuscript with changes tracked

Statistical Analysis performed by: W.S. Eikelboom MSc, Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; S.J. Baart PhD, Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands


Study Funding: This project was supported by an Alzheimer Nederland and Memorabel ZonMw Grant 733050823 (Deltaplan Dementie) to JMP and RO. Research of the Amsterdam UMC Alzheimer Centre is part of the neurodegeneration research program of the Neuroscience Campus Amsterdam. The Amsterdam UMC Alzheimer Centre is supported by Alzheimer Nederland and Stichting VUmc Fonds. WF holds the Pasman chair.

Disclosures: W.S. Eikelboom reports no disclosures relevant to the manuscript; E. van den Berg reports no disclosures relevant to the manuscript; E. Singleton reports no disclosures relevant to the manuscript; S.J. Baart reports no disclosures relevant to the manuscript; M. Coesmans reports no disclosures relevant to the manuscript; A.E. Leeuwis reports no disclosures relevant to the manuscript; C.E. Teunissen reports no disclosures relevant to the manuscript; B.N.M. van Berckel reports no disclosures relevant to the manuscript; Y.A.L. Pijnenburg reports no disclosures relevant to the manuscript; P. Scheltens reports no disclosures relevant to the manuscript; W.M. van der Flier reports no disclosures relevant to the manuscript; R. Ossenkoppel reports no disclosures relevant to the manuscript; J.M. Papma reports no disclosures relevant to the manuscript
ABSTRACT

Objective: To investigate the prevalence and trajectories of neuropsychiatric symptoms (NPS) in relation to cognitive functioning in a cohort of amyloid-β positive individuals across the Alzheimer’s disease (AD) clinical spectrum.

Methods: In this single-center observational study, we included all individuals who visited the Alzheimer Center Amsterdam and had 1) a clinical diagnosis of subjective cognitive decline (SCD), mild cognitive impairment (MCI), or probable AD dementia, and 2) were amyloid-β positive (A+). We measured NPS with the Neuropsychiatric Inventory (NPI), examining total scores and the presence of specific NPI domains. Cognition was assessed across five cognitive domains and with the MMSE. We examined trajectories including model based trends for NPS and cognitive functioning over time. We used linear mixed models to relate baseline NPI scores to cognitive functioning at baseline (whole-sample) and longitudinal time-points (subsample n=520, Mean=1.8 [SD=0.7] years follow-up).

Results: We included 1,524 amyloid-β positive individuals from the Amsterdam Dementia Cohort with A+ SCD (n=113), A+ MCI (n=321), or A+ AD dementia (n=1,090). NPS were prevalent across all clinical AD stages (≥1 NPS 81.4% in SCD, 81.2% in MCI, 88.7% in dementia; ≥1 clinically relevant NPS 54.0% in SCD, 50.5% in MCI, 66.0% in dementia). Cognitive functioning showed an uniform gradual decline; while in contrast, large intra-individual heterogeneity of NPS was observed over time across all AD groups. At baseline, we found associations between NPS and cognition in dementia that were most pronounced for NPI total scores and MMSE (range β=0.18 to 0.11, FDR-adjusted p<0.05), while there were no cross-sectional relationships in SCD and MCI (range β=-0.32 to 0.36, all FDR-adjusted p>0.05). There were no associations between baseline NPS and cognitive functioning over time in any clinical stage (range β=-0.13 to 0.44, all FDR-adjusted p>0.05).
Conclusion: NPS and cognitive symptoms are both prevalent across the AD continuum, but show a different evolution during the course of the disease.
INTRODUCTION

Alzheimer’s disease (AD) is characterized by a gradual decline in cognitive functions and activities of daily living.\(^1\) As neuropsychiatric symptoms (NPS) are present in the majority of patients with AD dementia,\(^2\) NPS are increasingly recognized as core clinical AD symptoms.\(^3\) Previous studies have associated the presence of NPS with an increased risk of progression to dementia and with worse cognitive performance and a faster cognitive decline in AD dementia.\(^4-6\) These studies have emphasized the clinical relevance of NPS in AD by highlighting its prognostic value.

Yet, several other studies have not found an association between NPS and cognitive functioning in AD dementia.\(^7-9\) These discrepant results may have a number of causes, such as the fact that studies often used instruments that assess general cognitive functioning (i.e. Mini-Mental State Examination [MMSE]) and overall NPS burden (i.e. Neuropsychiatric Inventory [NPI] total score).\(^7,10\) Furthermore, prior studies have often included patients based on clinical diagnostic criteria of AD without biomarker evidence,\(^9,11\) thereby increasing the likelihood of including patients with non-AD primary etiologies.\(^12\)

To address these challenges, the current study investigates 1) the prevalence and course of specific NPS, and 2) associations between baseline NPS and performance on multiple cognitive domains at baseline and over time in an amyloid-\(\beta\) positive sample ranging from normal cognition to dementia. This knowledge will provide a better understanding of the manifestation of NPS across the clinical stages of AD and its relationship with cognitive decline which could aid patient management in clinical practice.

METHODS

Participants

We included all patients who visited Alzheimer Center Amsterdam between June 2002 and December 2017 and had 1) a clinical diagnosis of subjective cognitive decline (SCD), mild cognitive impairment (MCI), or probable AD dementia, 2) were amyloid-\(\beta\) positive, and 3)
had NPI and neuropsychological assessment available at baseline. Individuals with possible AD dementia were excluded. All individuals underwent a standard diagnostic work-up including medical history taking, neurological examination, cognitive testing, lumbar puncture, and brain MRI. A subsample of the individuals underwent amyloid-β PET for research purposes (n=450). Clinical diagnoses were established using conventional diagnostic criteria at multidisciplinary meetings. Individuals had to meet the clinical criteria of SCD, MCI, or probable AD dementia, in addition to amyloid-β positivity based on either CSF (i.e. amyloid-β<sub>42</sub> <550 pg/mL or tau/amyloid-β<sub>42</sub> ratio >0.52) or visual rating of an amyloid-β PET scan with the radiotracers ¹⁸F-florbetaben (n=190), ¹¹CPIB (n=133), ¹⁸F-flutemetamol (n=100), or ¹⁸F-florbetapir (n=27). In case of amyloid-β PET/CSF discordance, amyloid-β status was determined based on the visual rating of amyloid-β PET. As all participants were amyloid-β positive, SCD will be denoted as A+ SCD, MCI as A+ MCI, and AD dementia as A+ AD dementia.

Neuropsychiatric assessment

The Neuropsychiatric Inventory (NPI) was used to assess NPS. This 12-item informant-based interview is a widely accepted measure of NPS in dementia. Each NPS domain is rated according to its severity (0-3) and frequency (0-4). We multiplied the severity and frequency scores for each domain to obtain a NPI domain score (0-12). The presence of specific NPS was defined as a severity × frequency score of ≥1 for each NPI domain. Clinically relevant NPS was defined as a severity × frequency score of ≥4 for each NPI domain. We summed the severity × frequency scores of all 12 domains to obtain the NPI total score (0-144). The presence of any NPS was defined as a NPI total score of ≥1. At baseline, scores were missing for the following NPI domains: n=8 for eating behaviors, n=8 for nighttime behaviors, n=2 for aberrant motor behaviors, n=1 for apathy, and n=1 for agitation.

Neuropsychological assessment
We used the Mini-Mental State Examination (MMSE) to assess global cognitive functioning. In addition, a standardized neuropsychological test battery was used to measure performance across five cognitive domains. We used immediate recall scores of the Visual Association Test part A and the immediate recall and delayed recall of the Rey Auditory Verbal Learning Test to measure memory. For attention, the Digit Span forward, Stroop Word Color test color and word conditions, and the Trail Making Test part A were administered. Executive functioning was assessed using Digit Span backward, Stroop test color-word condition, Trail Making Test part B, and the Frontal Assessment Battery. We used category fluency (animals) and the naming condition of the Visual Association Test to measure language. We measured visuospatial abilities using the number location, dot counting, and fragmented letters subtests of the Visual Object and Space Perception Battery. Individuals who were not able to complete the Trail Making Test or Stroop test due to cognitive difficulties were assigned the maximum score (i.e. higher scores reflect worse performance). We converted raw test scores into Z scores based on the mean (M) and standard deviation (SD) of an independent healthy reference group of 533 AD-biomarker negative individuals (M[SD] age=59.7[9.8], 54% female, M[SD] MMSE score=28.9[1.0]). The Z scores of the Trail Making Test and Stroop test were inverted to ensure that lower scores indicated worse performance. Next, Z scores were combined into cognitive domain scores by averaging cognitive scores if at least two tests within that domain were available for that individual. At baseline, cognitive domain scores were missing for 7 to 28%.

Standard Protocol Approvals, Registrations, and Patient Consents
The Medical Ethics Review Committee of the Amsterdam University Medical Centers approved the study. Written informed consent was obtained from all participants.

Statistical analysis
We compared baseline clinical characteristics, NPS prevalence, and cognitive performance across the diagnostic groups using ANOVA (with Tukey’s HSD post hoc test), Kruskal-Wallis Tests, or Chi-squared tests where appropriate.

We aimed to statistically analyze trajectories of NPI-scores; yet, the assumption of normality was not met for the longitudinal NPI domain scores given the substantial proportion of zeros, which remained unchanged after deploying several transformations. Therefore, we plotted individual trajectories of NPS and cognitive functioning over time according to disease stage and added model based trends with 95% confidence intervals to the graphs for descriptive purposes. In addition, we investigated the extent to which NPS and cognitive functioning changed over time within individuals (intra-individual variance) and between individuals (inter-individual variance). To quantify the variation within and between individuals, we conducted multilevel null models to obtain the percentage variance explained by intra-variance and inter-variance for neuropsychiatric measures and cognitive measures over time.

For these analyses, the continuous severity x frequency scores (0-12) of specific NPI domains were used.

To study associations between baseline NPS and cognitive functioning at baseline and over time, we performed linear mixed models (LMMs) including random intercepts and fixed slopes that were corrected for age, sex, and education. Determinants included the NPI total score and the presence of specific NPI domains. Outcomes were performance on the MMSE and the five predefined cognitive domains. LMMs were run separately for the clinical stages at baseline (i.e. SCD, MCI, AD dementia). We tested non-linear associations using LMMs with quadratic and cubic splines and selected linear LMM for all models based on the Likelihood-Ratio Chi-Squared Test and Akaike information criterion. We checked assumptions by visual inspection of standardized residuals scatterplots and Q-Q plots. As normality of cognitive scores slightly deviated in language and visuospatial abilities most pronounced in A+ SCD, we conducted sensitivity analyses using a bootstrap procedure with
200 bootstrap samples to calculate confidence intervals. This approach did not change the initial findings.

Level of significance was set at $p<0.05$. Yet, the post-hoc analyses on the NPS prevalence rates and the LMMs to study associations between NPS and cognitive performance were corrected for multiple testing using the Benjamini-Hochberg adjusted false discovery rate (FDR) of 0.05. Analyses were performed using SPSS version 26.0 and R version 4.0 (lme4, splines, lmerTest, effectsize, and boot packages).

Data Availability

Data not provided in the article and additional information on methods and materials can be shared upon reasonable request.

RESULTS

Participants

We included a total of 1,524 individuals of which 113 participants had a clinical diagnosis of A+ SCD, 321 participants with A+ MCI, and 1,090 participants with A+ AD dementia at baseline. Of the individuals with A+ AD dementia at baseline, the majority had mild dementia (87.2%, clinical dementia rating [CDR] score $\leq 1$), while 12.4% had moderate dementia (CDR=2), and 0.5% had severe dementia (CDR=3). A subsample of the participants had follow-up assessments available: n=53 (46.9%) with A+ SCD at baseline, n=142 (44.2%) with A+ MCI at baseline, and n=326 (29.9%) with A+ AD dementia at baseline. We found no differences in demographic and clinical characteristics between individuals with and without follow-up assessments for A+ SCD and A+ MCI. In A+ AD dementia, we did find lower cognitive functioning and higher NPS burden in individuals without follow-up assessment compared to individuals with follow-up assessment (table e-1, https://doi.org/10.5061/dryad.hqbzh1g2). We conducted longitudinal analyses in patients who had follow-up assessments available limited up to three years after baseline assessment,
since <10% of the 1,524 participants had more than 3 years of follow-up assessments available. Including these assessments may have resulted in underestimation of disease progression due to selective drop-out.\textsuperscript{20} For those with follow-up assessment available, mean follow-up duration was 1.7 years (SD=0.8) for A+ SCD, 1.9 years (SD=0.7) for A+ MCI, and 1.7 years (SD=0.7) for A+ AD dementia.

Baseline demographic and clinical characteristics of our sample of amyloid-\(\beta\) positive individuals are shown in Table. Participants with A+ MCI were older than individuals with A+ AD dementia (\(p<0.001\)) or A+ SCD (\(p<0.05\)). Participants with A+ AD dementia had lower levels of education compared to those without dementia (\(p<0.001\)). The proportion of females was higher in A+ AD dementia than A+ MCI (\(p<0.001\)). Of the individuals without dementia at baseline who had follow-up assessment available, 24.5\% (\(n=13\)) of the individuals with A+ SCD progressed to MCI or dementia, and 43.0\% (\(n=61\)) of the participants with A+ MCI progressed to dementia. As expected, baseline MMSE and baseline cognitive domain scores differed according to clinical AD stage (\(p<0.001\); table).

\textit{Prevalence of NPS at baseline across clinical stages}

NPS were prevalent across all AD stages with at least one NPS present in 81.4\% of the individuals with A+ SCD (54.0\% rated as clinically relevant), 81.2\% of the individuals with A+ MCI (50.5\% rated as clinically relevant), and 88.7\% of the individuals with A+ AD dementia (66.0\% rated as clinically relevant). The NPI total score was higher for A+ AD dementia compared to A+ SCD (\(p<0.01\)) and A+ MCI (\(p<0.001\)), while we found no difference in NPI total score between A+ SCD and A+ MCI (\(p=0.97\), table). The number of NPS present at baseline was higher for A+ AD dementia compared to A+ MCI (\(p<0.001\), with no difference between A+ SCD and the other clinical stages (all \(p>0.05\), table). The prevalence rates of the specific NPI domains across the clinical AD stages are presented in figure 1. The three most prevalent NPS were similar for all clinical stages and included apathy, irritability, and depression. The prevalence was higher at the more advanced clinical
Stage for the majority of NPI domains, especially for apathy, anxiety, eating behaviors, aberrant motor behaviors, and delusions. However, irritability, depression, nighttime behaviors, and hallucinations were more common in A+ SCD compared to A+ MCI and/or A+ AD dementia.

The NPI severity scores and frequency scores showed a similar pattern as the NPI prevalence rates, i.e. the highest severity and frequency scores were seen in A+ AD dementia with little differences between A+ SCD and A+ MCI (table e-2 and table e-3, https://doi.org/10.5061/dryad.hqbzkhh1g2). Furthermore, the distribution of clinically relevant NPS (NPI domain scores ≥4) showed a similar pattern compared to the distribution of the presence of NPS (table e-2, https://doi.org/10.5061/dryad.hqbzkhh1g2).

**Progression of NPS and cognition over time across clinical stages**

We plotted trajectories of specific NPI domains and performance on specific cognitive domains over time for patients across the different clinical AD stages. In participants with A+ SCD at baseline, the trends of specific NPI domain scores remained stable over time with a decline in apathy and a subtle increase for depression, anxiety, and agitation (figure 2, figure e-1, https://doi.org/10.5061/dryad.hqbzkhh1g2). Cognitive scores remained relatively stable over time for A+ SCD. In participants with A+ MCI at baseline, we observed a relatively stable trends of specific NPI domains over time, whereas a decline was observed in all cognitive domains (figure 3, figure e-2, https://doi.org/10.5061/dryad.hqbzkhh1g2). In participants with A+ AD dementia, little changes were found in trends of specific NPI domains over time, with modest increases in irritability, aberrant motor behaviors, and nighttime behaviors and decrease in depression and anxiety (figure 4, figure e-3, https://doi.org/10.5061/dryad.hqbzkhh1g2). Substantial decline was observed in all cognitive domains.

When looking at the trajectories of specific NPS and cognitive scores over time, we observed large variability in the course of specific NPS within and between individuals across all
clinical stages (figures 2-4, figures e-1–3, https://doi.org/10.5061/dryad.hqbzkh1g2). To further quantify this intra-individual variability and inter-individual variability, we performed multilevel null models for each measure according to clinical stage at baseline (table e-4, https://doi.org/10.5061/dryad.hqbzkh1g2). Across all clinical AD stages, the intra-individual variance of NPS measures was higher (all mean % explained >70%) compared to cognitive measures (all mean % explained <45%). Hence, we observed larger changes on NPS measures over time within individuals than between individuals, while the opposite was the case for cognitive measures.

Cross-sectional associations between NPS and cognitive functioning at baseline
Age-, sex-, and education-corrected LMM in A+ AD dementia showed that higher baseline NPI total scores were associated with lower baseline MMSE scores ($\beta=-0.08$ 95% CI [-0.14, -0.02], FDR-adjusted $p<0.001$) and lower performance on visuospatial abilities ($\beta=-0.11$ [-0.18, -0.04], FDR-adjusted $p<0.05$). Baseline NPI total scores were not related to cognitive functioning at baseline in A+ SCD and A+ MCI (all FDR-adjusted $p>0.05$, table e-5, https://doi.org/10.5061/dryad.hqbzkh1g2).

Next, age-, sex-, and education-corrected LMM assessing the associations between the presence of specific NPS and baseline cognitive performance showed that the presence of aberrant motor behaviors ($\beta=-0.28$ [-0.43, -0.13], FDR-adjusted $p<0.05$), agitation ($\beta=-0.27$ [-0.43, -0.11], FDR-adjusted $p<0.05$), euphoria ($\beta=-0.27$ [-0.41, -0.12], FDR-adjusted $p<0.05$), and apathy ($\beta=-0.18$ [-0.30, -0.06], FDR-adjusted $p<0.05$) were associated with worse MMSE scores in A+ AD dementia. The presence of nighttime behaviors was related to worse performance in language in AD dementia ($\beta=-0.29$ [-0.44, -0.13], FDR-adjusted $p<0.05$). In A+ MCI, the presence of hallucinations was associated with worse performance in attention ($\beta=-1.73$ [-2.68, -0.79], FDR-adjusted $p<0.05$). We found no associations between the presence of specific NPS and cognitive functioning at baseline in A+ SCD (all FDR-adjusted $p>0.05$, table e-5, https://doi.org/10.5061/dryad.hqbzkh1g2).
Repeating age-, sex-, and education-corrected LMM for clinically relevant NPS (NPI domain score ≥ 4) yielded highly similar results (table e-6, https://doi.org/10.5061/dryad.hqbzhk1g2).

**Associations between baseline NPS and cognitive functioning over time**

Using LMMs adjusted for age, sex, and education, baseline NPI total scores were not associated with changes in MMSE scores or cognitive domains over time in our cohort of amyloid-β positive individuals ranging from SCD to AD dementia (all FDR-adjusted $p > 0.05$, table e-7, https://doi.org/10.5061/dryad.hqbzhk1g2). With regard to specific NPS, baseline irritability was associated with less steep memory decline over time in individuals with A+ SCD at baseline ($\beta = 0.44$ [0.26, 0.61], FDR-adjusted $p < 0.001$). None of the baseline NPI domain scores were associated with cognitive functioning over time in A+ MCI and A+ AD dementia (all FDR-adjusted $p > 0.05$, table e-7, https://doi.org/10.5061/dryad.hqbzhk1g2). Repeating these age-, sex-, and education-corrected LMM with the presence of clinically relevant NPS (NPI domain score ≥ 4) did not change our findings (table e-8, https://doi.org/10.5061/dryad.hqbzhk1g2).

**DISCUSSION**

The main findings in this amyloid-β positive sample are 1) high prevalence rates of NPS across all clinical AD stages, 2) a substantial heterogeneity in trajectories of NPS over time, 3) cross-sectional associations between the presence and severity of NPS and worse cognitive functioning in dementia, and 4) absence of clear associations between baseline NPS and performance on specific cognitive domains over time for all clinical AD stages.

NPS were prevalent across the entire clinical AD spectrum and showed little relation with clinical severity. Almost 90 percent of the patients with A+ AD dementia showed at least one NPS, which is line with previous studies.\(^2\)\(^2\)\(^1\) Furthermore, over 80 percent of the individuals in the pre-dementia AD stages exhibited at least one NPS, which is remarkably higher compared to prior studies.\(^6\)\(^7\) Although NPS prevalence and severity was higher in AD
dementia compared to pre-dementia AD stages, our findings suggest that NPS may precede cognitive impairment during the clinical course of AD. These findings support the construct of mild behavioral impairment (MBI) by recognizing that NPS can be an early manifestation of dementia.\textsuperscript{22} Unfortunately, we were not able to establish the prevalence of MBI in our study as we had no information on the duration and degree of impairment of the NPS in the pre-dementia stages. We did not find many differences in NPS prevalence and severity between individuals with A+ SCD and individuals with A+ MCI, while some specific NPS were even more prevalent in A+ SCD compared to A+ MCI. NPS that were common in the A+ SCD stage included affective symptoms, irritability, and nighttime behaviors and might be a psychological response to the initial cognitive decline experienced and might be a reason to visit the memory clinic.\textsuperscript{21} Prior studies have indeed shown higher NPS prevalence rates in pre-dementia memory clinic cohorts compared to population-based studies.\textsuperscript{2,23,24} Moreover, the high NPS prevalence observed across all clinical stages in our cohort may also be influenced by the fact that these individuals visited a tertiary academic memory clinic with an overrepresentation of early-onset and atypical AD.

Our results indicate a different evolution over time for NPS compared to cognitive symptoms across the AD clinical spectrum. As expected, cognitive functioning showed a gradual decline that was most pronounced in the dementia stage.\textsuperscript{25} In contrast, the course of NPS showed a less coherent pattern with a relatively stable trends across all clinical AD stages, which is in line with prior research.\textsuperscript{26,27} Moreover, we found substantial heterogeneity within individuals in their course of NPS compared to the intra-individual variation of the course of cognitive functioning over time. Although previous studies have also suggested large variability in NPS prevalence and evolution between and within patients,\textsuperscript{28-30} the fluctuations in NPS observed in our study may also be due to methodological aspects of NPS measurements. For example, while cognitive functioning was assessed an extensive neuropsychological assessment covering five cognitive domains with at least two cognitive tests for each domain, NPS were measured using a single caregiver rating scale that can be
affected by caregiver distress and recall bias.\textsuperscript{3} To obtain a better insight in fluctuations in NPS in AD, future studies could assess NPS on short time intervals using a combination of informant-based scales, clinician-rating instruments, and self-report measures, e.g. by using an Ecological Momentary Assessments approach in which existing NPS scales are adjusted for daily assessments.\textsuperscript{31}

At baseline, we found associations between the presence and severity of NPS and lower cognitive performance in patients with AD dementia that were most evident when looking at NPI total scores and MMSE performance. We found little evidence for a cross-sectional relationship between NPS and cognitive functioning in the pre-dementia AD stages. Cross-sectional relationships between NPS and cognitive deficits as measured with the MMSE have previously been reported in AD dementia,\textsuperscript{32,33} and associations between NPS and performance on specific cognitive domains have also rarely been found in AD dementia.\textsuperscript{5,8,34,35} These differences in cross-sectional associations between clinical AD stages found in this study may be explained by the larger degree of cognitive variability among individuals with AD dementia compared to pre-dementia stages. We found no clear associations between baseline NPS and cognitive functioning over time across clinical stages.

Although prior studies have yielded similar results in different cohorts of patients with AD dementia,\textsuperscript{9,34,35} our findings are in contrast to several other studies that have related the presence of NPS with accelerated cognitive decline in individuals with normal cognition,\textsuperscript{11,36} MCI,\textsuperscript{10} and AD dementia.\textsuperscript{4,37} Previous studies have suggested that NPS are an integral part of AD and that the presence of NPS may be suggestive of underlying AD pathology.\textsuperscript{38} The studies described above that have previously examined the relationship between NPS and cognitive functioning have primarily included samples without AD-biomarker evidence. As a consequence, the presence of NPS in these samples may be suggestive of underlying AD pathology and has therefore been associated with cognitive decline. However, we already substantially increased the likelihood of underlying AD pathology as all individuals in our
sample were amyloid-β positive. Consequently, the presence of NPS may have less predictive value in this sample of amyloid-β positive individuals.

Our findings provide useful information for the management of care for patients with AD. While one can expect a gradual decline of cognitive functioning over time, it appears difficult to predict the progression of NPS given the large differences between and within individuals despite group trajectories showing generally little change over time. These findings emphasize a patient-centered approach in the assessment and management of NPS across all clinical AD stages. Moreover, more future studies are needed that focus on identifying subgroups of individuals at risk for developing NPS.

Cognitive symptoms have been related to pathophysiologic and neurodegenerative processes in AD, with generally weaker associations with amyloid-β as compared to brain atrophy and tau pathology. Several theories have been proposed to explain the manifestation of NPS in AD. While the symptom hypothesis states that NPS result from AD-related neuropathology that also contributes to cognitive impairment in AD, the risk factor hypothesis suggests that NPS arise from concurrent non-AD pathology, e.g. vascular depression. Recent studies have reported inconsistent associations between NPS and AD pathology, while providing some evidence for associations with non-AD biomarkers. Our findings suggested substantial fluctuations over time with no coherent pattern of decline or increase in NPS as the disease progresses leaving room open for other factors affecting NPS in AD. In addition to neurobiological causes, a variety of psychosocial factors have been proposed to play a role in the emergence and worsening of NPS in AD including unmet needs, stress among caregivers, and environmental triggers. Our findings show substantial fluctuations in NPS over time and no clear associations with cognitive symptoms suggesting that the symptom hypothesis alone cannot explain the emergence of NPS in AD.

Strengths of this study include the large well-defined sample of individuals who were all amyloid-β positive and underwent an extensive neuropsychological battery used to assess cognitive functioning. However, this study also has some limitations. First, although we took
a unilateral perspective when examining the relationship between NPS and cognitive functioning, we acknowledge that cognitive impairments can also contribute to the presence and worsening of NPS in AD.\textsuperscript{48} Second, we examined a relatively young cohort of participants (M[SD] age=66.3[7.7]) who visited a tertiary memory clinic and may be characterized by a relative absence of age-related comorbidities. This may limit the generalizability of our findings to cohorts with older individuals with AD. Furthermore, the number of individuals with A+ SCD or A+ MCI at baseline with follow-up assessments was low, resulting in low power and increasing potential risk of bias for these analyses. Analyses of potential bias in loss to follow-up of individuals showed little bias in A+ SCD and A+ MCI, but did show that individuals without follow-up assessments had more severe A+ AD dementia and greater NPS burden. Future studies with larger sample sizes including individuals with severe AD dementia are therefore needed. In addition, we did not have information on the use of psychotropic drugs, cholinesterase inhibitors, and memantine. This is an important limitations since these medications may affect the prevalence and evolution of both cognitive and neuropsychiatric symptoms. Finally, we were not able to formally test NPS trajectories using LMM, as assumptions of normality and linearity were not met. This was caused by a substantial proportion of zero-scores on the NPI, as well as the way NPI domain scores are calculated, i.e. by multiplying the severity score of 0 to 3 by the frequency score of 0 to 4 so that the values 5, 7, 10 and 11 cannot be observed.\textsuperscript{49,50} Using symptom-specific instruments such as the Apathy Evaluation Scale (score range 18–71), Cohen-Mansfield Agitation Inventory (score range 29–203), and Geriatric Depression Scale (score range 0–30) may not only help to fully characterize specific NPS, but also enables the use of statistical modelling due to a larger variation in potential scores compared to the NPI.

CONCLUSIONS

NPS were prevalent in a well-defined amyloid-\(\beta\) positive sample ranging from normal cognition to dementia. We found little associations between NPS and cognitive symptoms at
baseline and over time across the AD clinical spectrum. These findings suggest that NPS and cognitive symptoms are independent manifestations of AD that show a different evolution over the course of the disease.
### Appendix 1. Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willem S. Eikelboom, MSc</td>
<td>Erasmus MC, Rotterdam, the Netherlands</td>
<td>Design and conceptualization of the study; analyzed the data; drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Esther van den Berg, PhD</td>
<td>Erasmus MC, Rotterdam, the Netherlands</td>
<td>Interpretation of the data; revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Ellen Singleton, MSc</td>
<td>Amsterdam University Medical Centers, Amsterdam, the Netherlands</td>
<td>Interpretation of the data; revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Sara J. Baart, PhD</td>
<td>Erasmus MC, Rotterdam, the Netherlands</td>
<td>Analyzed the data; revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Michiel Coesmans, PhD</td>
<td>Erasmus MC, Rotterdam, the Netherlands</td>
<td>Revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Annebet E. Leeuwis</td>
<td>Amsterdam University Medical Centers, Amsterdam, the Netherlands</td>
<td>Revising the manuscript for intellectual content; involved in the acquisition of neuropsychological data.</td>
</tr>
<tr>
<td>Charlotte E. Teunissen</td>
<td>Amsterdam University Medical Centers, Amsterdam, the Netherlands</td>
<td>Revising the manuscript for intellectual content; involved in the acquisition of CSF biomarker data.</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Role in the Study</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>Bart N.M. van Berckel</td>
<td>Amsterdam University Medical Centers, Amsterdam, the Netherlands</td>
<td>Revising the manuscript for intellectual content; involved in the acquisition of PET data.</td>
</tr>
<tr>
<td>Yolande A.L. Pijnenburg, PhD</td>
<td>Amsterdam University Medical Centers, Amsterdam, the Netherlands</td>
<td>Revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Philip Scheltens, PhD</td>
<td>Amsterdam University Medical Centers, Amsterdam, the Netherlands</td>
<td>Revising the manuscript for intellectual content; contributed to the acquisition of patient data from the Amsterdam Dementia Cohort.</td>
</tr>
<tr>
<td>Wiesje M. van der Flier, PhD</td>
<td>Amsterdam University Medical Centers, Amsterdam, the Netherlands</td>
<td>Revising the manuscript for intellectual content; contributed to the acquisition of patient data from the Amsterdam Dementia Cohort.</td>
</tr>
<tr>
<td>Rik Ossenkoppele, PhD</td>
<td>Amsterdam University Medical Centers, Amsterdam, the Netherlands</td>
<td>Design and conceptualization of the study; interpretation of the data; revising the manuscript for intellectual content</td>
</tr>
<tr>
<td>Janne M. Papma, PhD</td>
<td>Erasmus MC, Rotterdam, the Netherlands</td>
<td>Design and conceptualization of the study; interpretation of the data; revising the</td>
</tr>
</tbody>
</table>
REFERENCES


35. Serra L, Perri R, Fadda L, et al. Relationship between cognitive impairment and

36. Liew TM. Neuropsychiatric symptoms in cognitively normal older persons, and the
association with Alzheimer’s and non-Alzheimer’s dementia. *Alzheimers Res Ther*.

37. Rozum WJ, Cooley B, Vernon E, Matyi J, Tschanz JT. Neuropsychiatric symptoms in
severe dementia: Associations with specific cognitive domains the Cache County Dementia

38. Geda YE, Krell-Roesch J, Sambuchi N, Michel BF. Neuropsychiatric symptoms and
neuroimaging biomarkers in Alzheimer’s disease: “Which is the cart and which is the


40. Peters ME, Lyketsos CG. Beyond memory: a focus on the other neuropsychiatric

41. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M.
‘Vascular depression’ hypothesis. *Arch Gen Psychiatry*. 1997;54(10):915-922;

neuropsychiatric symptoms, and cognitive status: the Mayo Clinic Study of Aging. *Transl

43. Malpas CB, Sharmin S, Kalincik T. The histopathological staging of tau, but not
amyloid, corresponds to antemortem cognitive status, dementia stage, functional abilities and

neuropsychiatric symptoms. *Int J Neurosci.* Published online Apr 30, 2020.


Table Demographic and clinical characteristics of the amyloid-β positive sample at baseline according to clinical AD stage

<table>
<thead>
<tr>
<th></th>
<th>A+ SCD (n=113)</th>
<th>A+ MCI (n=321)</th>
<th>A+ AD dementia (n=1,090)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean (SD)</td>
<td>65.8 (7.4)</td>
<td>67.7 (7.3)</td>
<td>65.9 (7.7)†a</td>
</tr>
<tr>
<td>Sex, female, n (%)</td>
<td>52 (46.0%)</td>
<td>135 (42.1%)</td>
<td>571 (52.4%)a</td>
</tr>
<tr>
<td>APOE ε4, n(%) carriers†</td>
<td>65 (60.2%)</td>
<td>216 (70.8%)</td>
<td>704 (66.7%)</td>
</tr>
<tr>
<td>MMSE score, mean (SD)‡</td>
<td>28.0 (1.7)</td>
<td>26.3 (2.4)†d</td>
<td>20.3 (5.1)†a,c</td>
</tr>
<tr>
<td>Cognitive Z scores, mean (SD)§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>-0.39 (0.9)</td>
<td>-2.40 (1.7)†d</td>
<td>-4.31 (2.1)†a,c</td>
</tr>
<tr>
<td>Attention</td>
<td>-0.26 (0.9)</td>
<td>-0.68 (1.2)</td>
<td>-3.50 (4.0)†a,c</td>
</tr>
<tr>
<td>Executive functioning</td>
<td>-0.22 (0.9)</td>
<td>-0.80 (1.0)†d</td>
<td>-2.68 (1.7)†a,c</td>
</tr>
<tr>
<td>Language</td>
<td>-0.11 (0.6)</td>
<td>-0.55 (0.7)†e</td>
<td>-1.68 (1.6)a</td>
</tr>
<tr>
<td>Visuospatial abilities</td>
<td>-0.08 (0.7)</td>
<td>-0.39 (0.9)</td>
<td>-2.97 (3.8)‡a,c</td>
</tr>
<tr>
<td>NPI total score, mean (SD)†</td>
<td>8.1 (9.2)</td>
<td>7.8 (9.0)</td>
<td>10.9 (10.6)‡a</td>
</tr>
<tr>
<td>No. of NPS present, mean (SD)†</td>
<td>2.4 (1.9)</td>
<td>2.4 (1.9)</td>
<td>2.9 (2.1)a</td>
</tr>
<tr>
<td>Clinical FU available, n (%)</td>
<td>53 (46.9%)</td>
<td>142 (44.2%)</td>
<td>326 (29.9%)</td>
</tr>
<tr>
<td>No. FU assessments, mean (SD)</td>
<td>1.7 (0.8)</td>
<td>1.7 ± 0.7</td>
<td>1.6 ± 0.7</td>
</tr>
<tr>
<td>FU duration, y, mean (SD)</td>
<td>1.7 (0.8)</td>
<td>1.9 ± 0.7</td>
<td>1.7 ± 0.7</td>
</tr>
<tr>
<td>Progressed to MCI or dementia, n (%)</td>
<td>13 (24.5%)</td>
<td>61 (43.0%)</td>
<td>–</td>
</tr>
</tbody>
</table>

Abbreviations: A+ = amyloid-β positive, AD = Alzheimer’s disease, APOE = Apolipoprotein E, FU = follow-up, MCI = mild cognitive impairment, MMSE = Mini-Mental State
Examination, NPI = Neuropsychiatric Inventory, NPS = neuropsychiatric symptoms, SCD = subjective cognitive decline.

* Dutch education system categorized into (1) less than 6 years primary education [<6 years], (2) completed primary education [6 years], (3) more than 6 years of primary education, without a secondary school diploma [8 years], (4) lower vocational training [9 years], (5) advanced vocational training or lower professional education [10-11 years], (6) advanced professional training or upper secondary school [12-18 years], and (7) academic degree [>18 years]. Missing data for SCD n=1, MCI n=1, and dementia n=12. † Missing data for SCD n=5, MCI n=16, and dementia n=34. ‡ Missing data for SCD n=2 and dementia n=16. § Missing data for Memory (SCD n=3, MCI n=26, dementia n=221), Attention (SCD n=3, MCI n=13, dementia n=101), Executive functioning (SCD n=3, MCI n=19, dementia n=162), Language (SCD n=4, MCI n=24, dementia n=142), Visuospatial abilities (SCD n=23, MCI n=84, dementia n=326). ¶ Missing data for MCI n=2 and dementia n=9.

\(^{a}\) \(p<0.001\); difference between A+ AD dementia and A+ MCI. \(^{b}\) \(p<0.05\); difference between A+ AD dementia and A+ SCD. \(^{c}\) \(p<0.001\); difference between A+ AD dementia and A+ SCD. \(^{d}\) \(p<0.01\); difference between A+ MCI and A+ SCD. \(^{e}\) \(p<0.05\); difference between A+ MCI and A+ SCD. \(^{f}\) \(p<0.01\); difference between A+ AD dementia and A+ SCD.
Figure 1 Prevalence of neuropsychiatric symptoms across an amyloid-β positive sample according to clinical AD stage

Abbreviations: A+ = amyloid-β positive, AD = Alzheimer’s disease, AMB = aberrant motor behaviors, MCI = mild cognitive impairment, NPS = neuropsychiatric symptoms, SCD = subjective cognitive decline.

* $p<0.05$; after correcting for false discovery rate.

** $p<0.01$; after correcting for false discovery rate.

*** $p<0.001$; after correcting for false discovery rate.
Figure 2. Longitudinal NPI domain scores and cognitive functioning for individuals with A+ SCD at baseline

Abbreviations: A+ = amyloid-β positive, AD = Alzheimer’s disease, AMB = aberrant motor behaviors, FU = follow-up, MMSE = Mini-Mental State Examination, NPI = Neuropsychiatric Inventory.

Individual trajectories are depicted with model based trends with 95% confidence intervals. Data showing four most prevalent neuropsychiatric symptoms at baseline and cognitive domains with most data available. See figure e-1 (https://doi.org/10.5061/dryad.hqbzkh1g2) for all data.
Figure 3. Longitudinal NPI domain scores and cognitive functioning for patients with A+ MCI at baseline

Abbreviations: A+ = amyloid-β positive, AD = Alzheimer’s disease, AMB = aberrant motor behaviors, FU = follow-up, MMSE = Mini-Mental State Examination, NPI = Neuropsychiatric Inventory.

Individual trajectories are depicted with model based trends with 95% confidence intervals. Data showing four most prevalent neuropsychiatric symptoms at baseline and cognitive domains with most data available. See figure e-2 (https://doi.org/10.5061/dryad.hqbzkh1g2) for all data.
Figure 4. Longitudinal NPI domain scores and cognitive functioning for patients with A+ AD dementia at baseline

Abbreviations: A+ = amyloid-β positive, AD = Alzheimer’s disease, AMB = aberrant motor behaviors, FU = follow-up, MMSE = Mini-Mental State Examination, NPI = Neuropsychiatric Inventory.

Individual trajectories are depicted with model based trends with 95% confidence intervals. Data showing four most prevalent neuropsychiatric symptoms at baseline and cognitive domains with most data available. See figure e-3 (https://doi.org/10.5061/dryad.hqbzkh1g2) for all data.
Neuropsychiatric and Cognitive Symptoms Across the Alzheimer Disease Clinical Spectrum: Cross-sectional and Longitudinal Associations
Willem S. Eikelboom, Esther van den Berg, Ellen H. Singleton, et al.
Neurology published online August 19, 2021
DOI 10.1212/WNL.0000000000012598

This information is current as of August 19, 2021

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2021/08/19/WNL.0000000000012598.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Neuropsychology/Behavior
http://n.neurology.org/cgi/collection/all_neuropsychology_behavior
Alzheimer's disease
http://n.neurology.org/cgi/collection/alzheimers_disease
MCI (mild cognitive impairment)
http://n.neurology.org/cgi/collection/mci_mild_cognitive_impairment

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.