Applying Propensity Score Methods in Clinical Research in Neurology

Author(s):
Peter C. Austin, PhD1,2,3; Amy Ying Xin Yu, MD, MSc1,4; Manav V. Vyas, MD, PhD1,4; Moira K. Kapral, MD, MSc1,2,5

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Corresponding Author:
Peter C. Austin
peter.austin@ices.on.ca

Affiliation Information for All Authors: 1. ICES, Toronto, Ontario, Canada; 2. Institute of Health Management, Policy and Evaluation, University of Toronto, Ontario, Canada; 3. Sunnybrook Research Institute, Toronto, Ontario, Canada; 4. Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; 5. Division of General Internal Medicine, Department of Medicine, University of Toronto, Canada

Contributions:
Peter C. Austin: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design
Amy Ying Xin Yu: Drafting/revision of the manuscript for content, including medical writing for content
Manav V. Vyas: Drafting/revision of the manuscript for content, including medical writing for content
Moira K. Kapral: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design

Number of characters in title: 97

Abstract Word count: 100

Word count of main text: 4387

References: 50

Figures: 2

Tables: 1

Search Terms: [46] All Education

Acknowledgements: This study was supported by ICES, which is an independent, non-profit research institute funded by an annual grant from the Ontario Ministry of Health (MOH) and the Ministry of Long-Term Care (MLTC). The opinions, results and conclusions reported in this paper are those of the authors and are independent from the funding sources. No endorsement by ICES or the Ontario MOH or MLTC is intended or should be inferred.

Study Funding: This research was supported by operating grant from the Canadian Institutes of Health Research (CIHR) (PJ1 166161). Drs. Austin and Kapral are supported by Mid-Career Investigator awards from the Heart and Stroke Foundation of Ontario. Dr. Kapral holds the Lillian Love Chair in Women’s Health at the University Health Network/University of Toronto. Dr. Yu is supported by a national new investigator award from the Heart and Stroke Foundation of Canada.
Disclosures: The authors report no disclosures relevant to the manuscript

Abstract (word count: 100)

Propensity score-based analysis is increasingly being used in observational studies to estimate the effects of treatments, interventions, and exposures. We introduce the concept of the propensity score and how it can be used in observational research. We describe four different ways of using the propensity score: matching on the propensity score, inverse probability of treatment weighting using the propensity score, stratification on the propensity score, and covariate adjustment on the propensity score (with a focus on the first two). We provide recommendations for the use and reporting of propensity score methods for the conduct of observational studies in neurological research.

Keywords: Propensity score, propensity score matching, inverse probability of treatment weighting, observational study
Observational studies are increasingly being used to estimate the effects of treatments and exposures. Such studies can often be conducted rapidly and at less expense than randomized controlled trials (RCTs) and can estimate the effects of treatments as they are used in real-world clinical practice. Furthermore, they permit the study of exposures for which it would be unethical to randomize patients (e.g., tobacco smoking), or, in some cases, not possible to randomize (e.g., sex). However, in observational studies, unlike in RCTs, treated subjects (used hereafter for exposed subjects) frequently differ at baseline from those receiving the control intervention. Studies are said to be subject to confounding when the distribution of variables that influence the outcome differs between treated and control subjects. In the presence of confounding, differences in outcomes between treatment groups may be due, at least in part, to these systematic differences between treated and control subjects.

In observational studies, statistical methods are required to reduce the effects of confounding when estimating the effects of treatments. Methods based on the propensity score are increasingly being used for this purpose. The objective of this paper is to introduce the propensity score and its application to neurological research. We define the propensity score, describe how it can be estimated in an observational cohort study, and review different methods for using the propensity score.

Two types of questions

There are two common questions that one can ask when estimating the effect of a treatment. First, what is the effect of treatment in the entire population or sample of eligible patients? This is equivalent to asking how outcomes would differ if everyone received the treatment of interest compared to if everyone received the control treatment. Second, what is the effect of treatment in those patients who ultimately received the treatment of interest? This is equivalent to asking how outcomes would differ in the treated subjects if, contrary to what occurred, they had not been treated. The former question is about the average treatment effect (ATE), while the latter is about the average treatment effect in the treated (ATT). Understanding the type of question that one is asking will help determine the most appropriate propensity score method to use.
In many pharmacoepidemiological studies the ATE may be of greater interest, as one can think of everyone in the eligible population as being treated with either agent. However, the ATT may be of greater interest in settings in which, despite all subjects being eligible for either treatment, there are barriers or burdens imposed by one of the treatments. For example, if the cost of a drug is not routinely covered by insurance, it may make more sense to estimate the effect of this drug in those subjects who ultimately decide to pay for it out of pocket.

Defining and estimating the propensity score

We assume an observational cohort study design with a binary treatment (treated vs. control) that is assessed at baseline (i.e., time of cohort entry). Treatment can either involve two active treatments (e.g., natalizumab vs. another disease-modifying therapy for patients with multiple sclerosis), or an active treatment compared with a null control treatment (e.g., edavarone vs. standard care in patients with amyotrophic lateral sclerosis). Baseline characteristics are measured on each subject. The outcome is measured after cohort entry (and implicitly after the treatment has been applied). Outcomes can be of types that are commonly seen in clinical research: continuous (e.g., blood pressure), binary (e.g., disabled on discharge vs. not disabled on discharge), time-to-event (e.g., time to death) or a count (e.g., number of healthcare encounters). Any outcome that one can use in an RCT can be used in a study that uses propensity score methods.

The propensity score is defined as the probability of receiving the treatment of interest (vs. the control treatment) conditional on measured subject covariates (1, 2). The primary property of the propensity score is that it is a balancing score (1). This means that in a subgroup of subjects, all of whom have the same value of the propensity score, the distribution of measured baseline covariates will be the same in treated and control subjects in that subgroup. Thus, we can remove the effects of confounding by comparing outcomes between treated and control subjects who share a similar value of the propensity score. This balancing is analogous to that induced by randomization in RCTs, with the key difference being that conditioning on the propensity score balances measured covariates, whereas
randomization ideally balances both measured and unmeasured covariates. Note that balance is a large sample property, and that a sufficiently large sample is necessary in order to expect to observe balance in a given sample.

The validity of conclusions drawn from an analysis that uses propensity score methods rests on two assumptions: (i) the assumption that the investigators have measured all confounding variables and that there are no unmeasured confounders and (ii) the positivity assumption that each subject has a non-zero probability of receiving each treatment (1). This implies that no subject has an absolute contraindication to either the active or control treatment. Subjects with an absolute (or relative) contraindication to either treatment should be excluded at the design stage, as is done in the design of RCTs. We refer the reader elsewhere for a discussion of positivity and methods to identify its presence (3). As an example, in a study comparing outcomes between immigrants to Ontario and long-term residents, subjects residing in rural areas were excluded because, in Ontario, immigrants reside almost exclusively in urban areas (4). These assumptions are no different from those required by other methods for estimating causal effects in observational studies.

The propensity score is frequently estimated using a logistic regression model in which treatment status (treatment vs. control) is regressed on the measured baseline covariates. While logistic regression is the most frequently-used approach, researchers can also use algorithmic approaches from the machine learning literature, such as random forests or generalized boosting models. Strategies for variable selection for the propensity score model have been described elsewhere; see Table for a summary of two strategies that perform well (5).

Once the propensity score has been estimated there are four main ways of using it: matching on the propensity score, inverse probability of treatment weighting (IPTW) using the propensity score, stratification on the propensity score, and covariate adjustment using the propensity score.

Matching on the propensity score
Matching on the propensity score entails forming matched sets of treated and control subjects who share a similar value of the propensity score. The most common implementation is pair-matching, in which pairs of treated and control subjects are formed. There are two common implementations of pair-matching. The first is greedy nearest neighbour matching (NNM), in which a treated subject is selected at random and then matched to the control subject whose propensity score is closest to that of the treated subject. The process is described as ‘greedy’ because at each stage the control is selected who is closest to the currently considered treated subject, even if that untreated subject would serve better as a control for a subsequent treated subject. This process is then repeated until a matched control subject has been selected for each treated subject. This process generally uses matching without replacement, so that once a control subject is matched to a treated subject, that control subject is no longer available for matching to a subsequent treated subject. A refinement to NNM is NNM with a caliper restriction. Using this approach, a control subject is an acceptable match for a treated subject only if the difference in their propensity scores is less than a maximum amount (the caliper width or distance). For technical reasons, one typically matches on the logit of the propensity score and uses a caliper width that is defined as a proportion of the standard deviation of the logit of the propensity score (6). Prior research has shown that a caliper of width equal to 0.2 of the standard deviation of the logit of the propensity score works well in a variety of settings (7). Readers are referred elsewhere for a discussion and examination of different matching algorithms (8, 9). An alternative to greedy matching is optimal matching, which forms matched pairs to minimize the total within-pair difference in the propensity score. Alternative matching algorithms to pair-matching have been described in the literature. These include fixed ratio M:1 matching, variable ratio matching, and full matching (10-15). While NNM with a caliper restriction is often a preferred approach, an attraction of these alternative matching algorithms is the ability to include a larger number of control subjects in the analytic sample.

Matching on the propensity score can be combined with exact matching on a small number of baseline covariates. This will ensure perfect balance on these variables between treated and control subjects in the matched sample. This approach is important if one wants to conduct subsequent
subgroup analyses, so that matched pairs are included in the same subgroup. If one wanted to conduct subsequent sex-specific analyses, one could match on the propensity score and on sex, so that matched subjects were of the same sex. When matching on a variable such as sex, it is not necessary that that variable be excluded from the propensity score model. Matching on the propensity score does not guarantee that matched subjects will be identical on all measured variables. Rather, the distribution of the covariates will be similar between treated and control subjects in the matched sample.

A crucial step in any study that uses propensity-score matching is to assess the degree to which matching on the propensity score resulted in the formation of a matched sample in which the distribution of baseline characteristics is similar between treated and control subjects. This assessment is critical as it allows both the researcher and readers to assess whether matching on the estimated propensity score has removed systematic baseline differences between treatment groups. This assessment should always be conducted while blinded to the outcomes (i.e., before any comparison of outcomes between treated and control subjects). The use of statistical significance testing for assessing differences in baseline characteristics has been criticized by different sets of authors (16, 17). Instead, we recommend the use of statistics that are properties of samples and that, unlike statistical hypothesis testing, do not refer to hypothetical super-populations. The use of the standardized difference, which is the difference in means in units of standard deviation, is often used for assessing the similarity of matched treated and control subjects. Some authors have suggested that a threshold of 0.10 (or 10%) be used to denote acceptable balance after matching (18). While most researchers limit balance assessment to using standardized differences to compare the means and prevalences of covariates between treatment groups, a comprehensive suite of balance diagnostics is described elsewhere for those wanting to conduct a more extensive assessment (19). If inadequate balanced is observed, the researchers are encouraged to modify the specification of the propensity score model. Possible modifications include allowing for non-linear relationships between continuous covariates and the log-odds of treatment (e.g., using restricted cubic splines) or the inclusion of interactions balance (20). For
example, Rosenbaum and Rubin, in the first application of propensity score methods, described an iterative process that required four iterations to achieve acceptable balance (20).

Once acceptable balance has been achieved, the analyst can unblind themselves to the outcome and compare outcomes between treated and control subjects in the matched sample. The analyses conducted in the propensity-score matched sample can be similar to those that would be done in an RCT with a similar outcome. Thus, if the outcome is continuous (e.g., the Unified Parkinson's Disease Rating Scale), one can compute the mean blood pressure in each treatment group and then compute the difference in mean blood pressure. Similarly, if the outcome is binary (e.g., resolution of symptoms), one can compute the proportion of successes in each treatment group. One can then compute the absolute risk reduction (difference in the estimated proportions in each treatment group) and the relative risk (ratio of the estimated proportions in each treatment group). From the former, one can estimate the number needed to treat (NNT), which some have described as a key statistic for medical decision making (21, 22). Note that there is no need to report an odds ratio. If the outcome is time-to-event in nature, one can estimate Kaplan-Meier survival curves (or cumulative incidence functions if there are competing risks) in treated and control subjects (23, 24). These survival curves can be complemented by estimating a univariate Cox model (or cause-specific hazard model if there are competing risks) in which the hazard of the outcome is regressed on treatment status.

While estimation of the effect of treatment (e.g., estimating the hazard ratio or risk difference) can be obtained using analyses that reflect those that would be conducted in a similar RCT, the standard error of the estimated effect (used for constructing confidence intervals) should account for the matched nature of the sample (25-28). Thus, for instance, with a Cox model, a robust variance estimator can be used (26), while one can use McNemar’s test for comparing proportions between groups (27).

When using matching on the propensity score, one is estimating the ATT. One cannot make inferences about the effect of treatment in the entire population of treated and control subjects.

Propensity-score matching in the neurology literature
Yu and colleagues used matching on the propensity score to estimate the efficacy of intravenous thrombolysis with recombinant tissue-type plasminogen activator (tPA) for acute ischemic stroke in routine clinical practice (29). In order to account for baseline differences between groups, they used propensity score matching using NNM caliper matching with a caliper of 0.2 times the standard deviation of the logit of the propensity score. They used standardized differences to confirm that there were no meaningful differences in measured baseline covariates between treated and control subjects in the matched sample. Having satisfied themselves that matching had substantially decreased differences between the two groups, they compared mortality in those who did and did not receive tPA using Kaplan-Meier survival curves (compared using a stratified log-rank test to account for the matched nature of the sample) and a Cox proportional hazards model to compare the hazard of death between treated and control subjects.

An advantage to using propensity-score matching in this context is that it discards those untreated subjects who are dissimilar to any treated subject and retains only controls who are similar to the treated subjects. Yu and colleagues estimated the effect of tPA in those who received it. Some applied researchers are wary of using propensity-score matching for fear of excluding subjects from the matched sample, but this concern is generally unwarranted. It is important to identify a matched control for each treated subject, as failure to do so can result in bias due to incomplete matching (because one is trying to estimate the effect of treatment in only a subset of treated subjects who may differ systematically from the overall population of treated subjects). However, once a control subject has been identified for each treated subject, the remaining unused control subjects are superfluous and their exclusion from the analysis is unimportant. For this reason, matching works best in those settings in which there are substantially more controls than treated subjects, as this increases the likelihood of identifying a suitable control for each treated subject.

Inverse probability of treatment weighting using the propensity score

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Inverse probability of treatment weighting (IPTW) using the propensity score creates weights based on the propensity score (30). In the weighted sample, the distribution of measured baseline covariates will be the same in treated subjects as in control subjects. Thus, the presence of confounding is removed by weighting and outcomes can be compared directly between treated and control subjects in the weighted sample. IPTW can be understood through the lens of complex surveys that incorporate sampling weights. Just as survey weights allow one to standardize the survey sample so that it is reflective of a given population, the use of IPTW standardizes each of the treated and control samples to a common reference sample.

Let Z be a binary variable denoting treatment status (Z = 1 for treated vs. Z = 0 for control) and \(e \) denote the propensity score. Conventional IPT weights are defined as \(w = \frac{Z}{e} + \frac{1-Z}{1-e} \). Thus, all subjects are weighted by the reciprocal of the probability of receiving the treatment that they actually received. This set of weights uses the combined sample of treated and control subjects as the target population to which each is standardized. A modification of these weights are stabilized weights:

\[
 w_{stab} = \frac{\text{Pr}(Z = 1)}{e} + \frac{\text{Pr}(Z = 0)}{1-e} \tag{31}
\]

The use of stabilized weights may reduce the effect of a small number of subjects with very high weights, which can result in improved variance estimation. The use of either conventional IPT weights or stabilized weights allows the investigator to estimate the ATE. An alternative set of weights allows one to estimate the ATT:

\[
 w_{att} = Z + \frac{e(1-Z)}{1-e} \tag{32, 33}
\]

Thus, treated subjects have a weight of 1, while control subjects have a weight of \(e/(1-e) \). This implies that the treated subjects are the reference population to which each of the treated and control samples are standardized. The investigator must choose the set of weights (ATE vs. ATT) that is appropriate to address the specific study question. While ATE and ATT weights are the most commonly-used propensity score-based weights, matching weights, overlap weights, and entropy weights are alternatives (34).

Once the weights have been estimated it is important to examine the distribution of the weights, as very large weights can affect variance estimation of the treatment effect and subjects with very large weights are can have a disproportionate influence on the estimated effect.
weights can exert undue influence on the analyses and result in unstable estimates. Unfortunately, there is no definition as to what constitutes a large weight. Strategies to address the presence of large weights include trimming large weights, so that weights that exceed a given threshold are truncated to equal this threshold (e.g., weights that exceed the 99th percentile of weights are set equal to the 99th percentile) or excluding subjects whose propensity score is less than 0.1 or greater than 0.9 (35). Additional weight-based diagnostics are described elsewhere (36).

Once the propensity score has been estimated and the appropriate set of weights has been constructed, an assessment of the degree to which using the weights has allowed one to balance measured baseline covariates between treatment groups must be conducted prior to examining the effect of treatment on outcomes. An extensive set of balance diagnostics for use with propensity-score weighting has been described elsewhere (36). As with matching, the use of standardized differences in the weighted sample is recommended and the process of specifying the propensity score can proceed iteratively until acceptable balance is achieved.

Since weighting has removed the effects of confounding, one can estimate the effect of treatment using methods similar to those used in a comparable RCT. For continuous outcomes, one can estimate the weighted mean outcome in treated and control subjects separately and then compute the difference in means. For binary outcomes, one can estimate the weighted proportion of successes in treated and control subjects and then compute an absolute risk reduction, a relative risk, and an NNT. As with matching, there is no need to estimate an odds ratio. With time-to-event outcomes, weighted Kaplan-Meier survival curves (or cumulative incidence functions in the presence of competing risks) can be estimated, along with a weighted Cox proportional hazards model. Lunceford and Davidian describe methods to estimate the variance of differences in means (which can also be used with risk differences) (37). Xie and Liu describe a test for equality of weighted survival curves (38). When using a regression model (e.g., a Cox model) in the weighted sample, variance estimation must account for the within-subject homogeneity induced by the weights (39, 40). One option is to use a robust variance estimator (26). For all estimated measures of effect (e.g., a relative risk or a hazard ratio), one can use
bootstrapping to construct confidence intervals. When using the bootstrap, it would be important to estimate the propensity score within each bootstrap sample in order to reflect the variability in the estimated statistic.

IPTW in the neurology literature

Vyas and colleagues used IPTW to compare mortality after ischemic stroke between immigrants and long-term residents (4). They used standardized differences to compare baseline covariates between immigrants and long-term residents in the weighted sample and confirmed that these were < 0.10. Both Kaplan-Meier survival curves and a Cox regression model were used to compare mortality between immigrants and long-term residents in the weighted sample.

Hersh and colleagues used IPTW to compare relapse between switching from natalizumab to a moderate-efficacy disease-modifying therapy vs. high-efficacy therapy in patients with multiple sclerosis (41). The authors used ATT weights with those switching to a moderate-efficacy disease-modifying therapy as the reference population. The authors used standardized differences to assess the balance in baseline covariates induced by weighting; after weighting all but five of the standardized differences were less than 10%. The authors then used a Poisson regression model to compare the relapse rate between treatment groups.

Stratification and covariate adjustment using the propensity score

Stratification on the propensity score involves ranking subjects on the estimated propensity score and then dividing the sample into approximately equal size strata based on specified percentiles of the propensity score. Using five strata based on quintiles of the propensity score is the most common approach in practice. One then compares treated and control subjects in each stratum and computes stratum-specific estimates of treatment effect, which are then pooled to generate an overall estimate of treatment effect.
Covariate adjustment using the propensity score involves regression of the outcome on an indicator variable denoting treatment status and the propensity score. This method was initially suggested for use with continuous outcomes and when estimating a linear treatment effect (e.g., a difference in means). However, it was subsequently frequently applied in settings with binary or time-to-event outcomes.

Lunceford and Davidian suggest that stratification is affected by “biased inference due to residual confounding, and the effect of this bias becomes more serious with increasing sample size” (37). Other research has shown that both stratification on the propensity score and covariate adjustment using the propensity score can lead to biased estimation of odds ratios and hazard ratios, (26, 42, 43) and that covariate adjustment using the propensity score resulted in a greater magnitude of residual confounding than did matching on the propensity score or IPTW (44). A further limitation of covariate adjustment using the propensity score is that it relies on a regression model to relate the outcome to treatment status and other variables (the propensity score). This approach requires the assumption that the outcomes regression model has been correctly specified.

For these reasons, while these two propensity score methods may be preferable in specific settings, we generally encourage researchers to consider either matching or weighting as the first propensity score approach to be considered.

Using the propensity score to estimate effects of non-binary treatments

In the preceding sections we have focused on methods to use the propensity score to estimate the effects of binary treatment (treated vs. control), as this is the most common application of propensity score methods. The generalized propensity score is an extension of propensity score methods to continuous or quantitative treatments (e.g. number of anti-epileptic medications) (45-48). When considering a non-binary categorical treatment (e.g., glatiramer acetate vs. interferon beta-1b vs. interferon beta-1a for treatment of multiple sclerosis), one possible approach is to conduct a sequence of analyses, each consisting of a comparison of two of the different levels of the treatment.
Alternatively, methods using a multinomial logistic regression model to estimate the propensity score have been described (49). Further research is necessary to determine the relative performance of these approaches.

Propensity score versus regression-based methods

Many researchers are familiar with regression-based approaches to account for confounding and may wonder whether it is worthwhile to learn a new technique. There are several advantages to the use of propensity score matching and weighting over conventional regression adjustment. First, when outcomes are binary, one can report absolute risk differences, relative risks, and NNTs. Similarly, with time-to-event outcomes, one can report absolute differences in survival at specific time points (obtained from the estimated survival curves) and hazard ratios. In contrast, with conventional regression adjustment, one is generally limited to reporting odds ratios and hazard ratios. While the other measures can be estimated with additional work, this is rarely done in practice. Second, through describing the distribution of baseline covariates in treated and control subjects in the matched or weighted sample, one can illustrate the degree to which matching or weighting has removed systematic baseline differences between treatment groups. It is much more difficult to determine the degree to which regression adjustment has minimized differences between groups. Finally, in settings in which outcomes are rare and the sample size is low to moderate, regression-based approaches would be limited in terms of the number of covariates that could be included in the regression model. This limitation does not apply to propensity score methods.

Limitations of propensity score methods

Propensity score methods allow one to remove the effects of confounding due to measured baseline covariates. They make no claim to remove the effects of confounding due to unmeasured covariates, and findings from observational studies must be interpreted with care given this potential for residual confounding (a limitation shared by regression adjustment). Rosenbaum described sensitivity
analyses that can be used with propensity-score matching to assess the robustness of study conclusions to unmeasured confounding (50).

Conclusion

In summary, propensity score methods reduce the effects of confounding due to measured baseline covariates by creating a matched or weighted sample in which the distribution of measured baseline covariates is similar in treated and control subjects. This allows for a direct comparison of outcomes between treatment groups and the use of metrics of treatment effect similar to what would be done in a comparable RCT. We have provided a checklist of study design and analysis considerations in Figure 1 and a reporting checklist for manuscripts that use propensity score matching or weighting in Figure 2.

We hope this brief introduction will be of use to neurological researchers, and that the checklists and recommendations provided will strengthen the quality of observational studies that use propensity score methods.

References

10. Austin PC. Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score. American Journal of Epidemiology. 2010;172(9):1092-7.

44. Austin PC. The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies. Medical Decision Making. 2009;29(6):661-77.

<table>
<thead>
<tr>
<th>Table: Strategies for selecting variables to include in a propensity score model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Include all variables prognostic for the outcome</td>
</tr>
<tr>
<td>Definition</td>
</tr>
<tr>
<td>All prognostically important variables, regardless of whether they are also associated with treatment assignment.</td>
</tr>
<tr>
<td>Comments</td>
</tr>
<tr>
<td>Easier to implement. Prognostically important variables likely to be constant across jurisdictions and can be identified from the literature.</td>
</tr>
</tbody>
</table>

Figure 1: Author checklist for the design and analysis of studies using propensity score methods

☐ Exclude patients with absolute contraindications to either the active or control treatment
☐ Measure enough baseline covariates so that the assumption of no unmeasured confounding is plausible
☐ If using propensity-score weighting:
 ☐ Decide whether to estimate either the average treatment effect (ATE) or the effect of treatment in those who are treated (ATT)
 ☐ Assess the distribution of weights to determine if any patients have very large weights that may have an undue influence on analyses
☐ Perform balance diagnostics to ensure that the distribution of baseline characteristics is similar between treated and control patients in the matched or weighted sample; if needed, modify the propensity score model to achieve balance. Use statistical techniques for balance assessment that describe properties of samples (e.g. standardized differences)
☐ Compare outcomes between treated and control patients in the matched or weighted sample. As desired, estimate absolute and relative risk reductions, number needed to treat, Kaplan-Meier survival curves, or Cox models.
 ☐ If using propensity score matching, use an appropriate variance estimation method to account for within matched set homogeneity in outcomes
 ☐ If using propensity score weighting use an appropriate variance estimator to account for the use of weights
Figure 2: Author checklist for the reporting of studies using propensity score methods

☐ List the variables included in the propensity-score model and the rationale for their inclusion

☐ If propensity-score matching was used:

☐ Explicitly describe the matching method (e.g., greedy nearest neighbor matching, caliper restriction, optimal matching, etc.) to allow others to replicate study findings

☐ List any covariates on which an exact match was forced

☐ Report the percentage of treated patients for whom a control patients was identified

☐ Present the results of balance diagnostics. Include a table or figure comparing measured baseline covariates in treated and control patients in the matched sample

☐ If propensity-score weighting was used:

☐ State the type of weight used (e.g., stabilized IPTW weights) to allow others to replicate the study findings

☐ Present results of balance diagnostics. Include a table or figure comparing measured baseline covariates in treated and control patients in the weighted sample
Applying Propensity Score Methods in Clinical Research in Neurology
Peter C. Austin, Amy Ying Xin Yu, Manav V. Vyas, et al.
Neurology published online September 9, 2021
DOI 10.1212/WNL.0000000000012777

This information is current as of September 9, 2021

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/early/2021/09/09/WNL.0000000000012777.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.